INTERNATIONAL CONFERENCE on MATHEMATICS, COMPUTATIONAL SCIENCES and STATISTICS 2020
29th September, 2020 | Online Conference

“Mathematics, Computational Sciences and Statistics for Better Future”

MATHEMATICS DEPARTMENT
FACULTY OF SCIENCE AND TECHNOLOGY
UNIVERSITAS Airlangga
Preface: International Conference on Mathematics, Computational Sciences and Statistics 2020

Cite as: AIP Conference Proceedings 2329, 010001 (2021); https://doi.org/10.1063/12.0003298
Published Online: 26 February 2021

ARTICLES YOU MAY BE INTERESTED IN

AIP Conference Proceedings 2332, 010001 (2021); https://doi.org/10.1063/12.0003308

On the (pseudo) super edge-magic of 2-regular graphs and related graphs
AIP Conference Proceedings 2329, 020001 (2021); https://doi.org/10.1063/5.0042216

Preface: Third International Conference on Material Science, Smart Structures and Applications (ICMSS 2020)
AIP Conference Proceedings 2327, 010001 (2021); https://doi.org/10.1063/12.0003113
On behalf of the Program Committee, we would like to thank all participants of “The International Conference on Mathematics, Computational Sciences and Statistics (ICoMCoS) 2020” hosted by Department of Mathematics, Universitas Airlangga.

2020 has been a very challenging year due to Covid-19 pandemic, in which for the sake of safety and well-being of all participants, our initial plan to held ICoMCoS 2020 in Surabaya, Indonesia, has been converted to be fully delivered virtually. Nevertheless, while we may all be physically distant, we hope we can still connect intellectually.

The theme of ICoMCoS 2020 is “Mathematics, Computational Sciences and Statistics for a Better Future”. With increasing complexities of our world today, Mathematics, Computational Sciences and Statistics have become powerful tools to elucidate all the complexities as well as provide the solution. ICoMCoS 2020, in a more detail outfit, is designed to provide a multidisciplinary forum for promoting and fostering interactions between mathematics (Analysis and Geometry, Algebra and Combinatoric, Applied Mathematics), computational sciences (algorithm analysis, network security and cryptography, artificial intelligence and machine learning, knowledge discovery and data mining, machine translation, image processing), and statistics (statistical theory, statistics modeling, forecasting methods, multivariate methods, econometrics, biostatistics, actuarial sciences) as well as related methodologies in studying various phenomena in the area.

We would like to say thanks to all authors who have submitted the paper to our proceedings. We also thank the scientific committee members and all of the reviewers for all supports during the conference and the preparation of the proceedings. As the scientific manuscripts of the conference, we provide the AIP Proceedings which contains the high-quality paper selected by a blind review process. We apologize to the authors if this process creates inconvenience.

Last but not least, there have been enormous collective efforts being put to run ICoMCoS 2020, in one form or another, so, on behalf of the Program Committee, let me take this opportunity to express my high appreciation to all of those that have contributed.

Cicik Alfiniyah, PhD
ICOMCOS 2020 Program Committee Chair
ORGANIZING COMMITTEE

GENERAL CHAIR
Prof. Win Darmanto, PhD

EXECUTIVE CHAIR
Dr. Herry Suprajitno

PROGRAM COMMITTEE CHAIR
Cicik Alfiniyah, PhD

PROGRAM COMMITTEE CO-CHAIR
M. Fariz Fadillah Mardianto, M.Si.

WORKSHOP CHAIR
Dr. Eridani

PUBLICATION CHAIR
Dr. Windarto

CONFERENCE PROGRAMME
Dr. Liliek Susilowati
Dr. Nenik Estuningsih
Endah Purwanti, M.Kom.
Dr. Yayuk Wahyuni.
Auli Damayanti, M.Si.
Elly Ana, M.Si.
Inna Kuswandari, M.Si.
Marisa Rifada, M.Si.

SECRETARY
Abdulloh Jaelani, M.Si.
Asri Bakti Pratiwi, M.Si.
Siti Maghfirotul Ulyah, M.Sc.
Purbandini, M.Kom.
Army Justitia, M.Kom.
Bustomi, M.Si
Nania Nuzulita, M.Kom
Nurhidayat, S.Si
TREASURER
Siti Zahidah, M.Si (Coordinator)
Indah Werdiningsih, M.Kom.

SPONSORSHIP
Kartono, M.Kom.
Sediono, M.Si.
Suliyanto, M.Si.

CONFERENCE WEBSITE
Edi Winarko, M.Cs.
Badrus Zaman, M.Cs.
Faried Effendy, M.Kom.
Eto Wuryanto, DEA.
Muchammad Yusuf Syaifuddin, M.Si.
Taufik, M.Kom.
Dr. Toha Saifuddin Muhammadun, M.Si.

PUBLICATION AND DOCUMENTATION
Dr. Herry Suprajitno
Abdul Aziz, S.T.
NurHidayat, S. Si.
Khoni Iswantono, S.T.
Ahmad Nurfizal Reza, S.T.
INTERNATIONAL SCIENTIFIC COMMITTEE

Prof. Haavard Rue (Statistics, King Abdullah University of Science and Technology, Saudi Arabia)
Prof. Norsarahaida Saidina Amin (UTM, Malaysia)
Assoc. Prof. Norhaslinda Kamaruddin (Computer Science, Universiti Teknologi MARA, Malaysia)
Prof. Yoshihiro Sawano (Mathematics, Tokyo Metropolitan University, Japan)
Prof. Martin Alan Bees (Mathematics, University of York, United Kingdom)
Dr. Ebenezer Bonyah (Applied Mathematics, University of Education, Winneba, Ghana)
Dr. Fatmawati (Mathematics, Universitas Airlangga, Indonesia)
Prof. Dedi Rosadi (Statistics, Universitas Gadjah Mada, Indonesia)
Prof. I Nyoman Budiantara (Statistics, Institut Teknologi Sepuluh Nopember, Indonesia)
Prof. Hadi Susanto (Applied Mathematics, Khalifah University, Abu Dhabi)
Dr. Nur Chamidah (Statistics, Universitas Airlangga, Indonesia)
Ira Puspitasari, Ph.D (Computational Science, Universitas Airlangga, Indonesia)
Dr. Jiraroj Tosasukul (Naresuan University, Thailand)
Dr. Windarto (Mathematics, Universitas Airlangga, Indonesia)
Dr. Rimuljo Hendradi (Computational Science, Universitas Airlangga, Indonesia)
Dr. Toha Saifudin (Statistics, Universitas Airlangga, Indonesia)
Dr. Liliek Susilowati (Mathematics, Universitas Airlangga, Indonesia)
Dr. Eridani (Mathematics, Universitas Airlangga, Indonesia)
Dr. Moh. Imam Utoyo (Mathematics, Universitas Airlangga, Indonesia)
Dr. Miswanto (Mathematics, Universitas Airlangga, Indonesia)
Dr. Ardi Kurniawan (Statistics, Universitas Airlangga, Indonesia)
Dr. Herry Suprajitno (Mathematics, Universitas Airlangga, Indonesia)
REVIEWERS

A’yunin Sofro, Ph.D. (Mathematics, Universitas Negeri Surabaya, Indonesia)
Abdul Rouf Alghofari, Ph.D. (Mathematics, Universitas Brawijaya, Indonesia)
Prof. Agus Suryanto (Mathematics, Universitas Brawijaya, Indonesia)
Dr. Anna Islamiyati (Statistics, Universitas Hasanuddin, Indonesia)
Dr. Ardi Kurniawan (Statistics, Universitas Airlangga, Indonesia)
Dr. Asmiati (Mathematics, Universitas Lampung, Indonesia)
Dr. Aswi (Mathematics, Universitas Negeri Makassar, Indonesia)
Dr. Budi Lestari (Mathematics, Universitas Jember, Indonesia)
Dr. Budi Setiyono (Mathematics-Computational Sciences, Institut Teknologi Sepuluh Nopember, Indonesia)
Cicik Alfiniyah, Ph.D. (Mathematics, Universitas Airlangga, Indonesia)
Dr. Darmaji (Mathematics, Institut Teknologi Sepuluh Nopember, Indonesia)
Dr. Darnah A. Nohe (Statistics, Universitas Mulawarman, Indonesia)
Dr. Dieky Azkiya (Mathematics, Institut Teknologi Sepuluh Nopember, Indonesia)
Dr. Eridani (Mathematics, Universitas Airlangga, Indonesia)
Dr. Fatmawati (Mathematics, Universitas Airlangga, Indonesia)
Dr. Hengki Tasman (Mathematics, Universitas Indonesia, Indonesia)
Dr. Herry Suprajitno (Mathematics, Universitas Airlangga, Indonesia)
Prof. I Nyoman Budiantara (Statistics, Institut Teknologi Sepuluh Nopember, Indonesia)
Dr. Imam Muklash (Mathematics, Institut Teknologi Sepuluh Nopember, Indonesia)
Ira Puspitasari, Ph.D (Computational Science, Universitas Airlangga, Indonesia)
Dr. Kasbawati (Mathematics, Universitas Hasanuddin, Indonesia)
Dr. Kiswara Agung Santoso (Mathematics-Computational Science, Universitas Jember, Indonesia)
Dr. Liliek Susilowati (Mathematics, Universitas Airlangga, Indonesia)
Dr. Lyra Yulianti (Mathematics, Universitas Andalas, Indonesia)
Meksianis Z. Ndii, Ph.D. (Mathematics, Universitas Nusa Cendana, Indonesia)
Dr. Miswanto (Mathematics, Universitas Airlangga, Indonesia)
Dr. Moh. Imam Utoy (Mathematics, Universitas Airlangga, Indonesia)
Dr. Muhammad Zakir (Mathematics, Universitas Hasanuddin, Indonesia)
Dr. Nur Chamidah (Statistics, Universitas Airlangga, Indonesia)
Dr. Rimuljo Hendradi (Computational Science, Universitas Airlangga, Indonesia)
Dr. Ririe Rahmat (Otomasi Sistem Instrumentasi, Universitas Airlangga, Indonesia)
Dr. Soebri Abusini (Mathematics, Universitas Brawijaya, Indonesia)
Dr. Suci Astutuik (Statistics, Universitas Brawijaya, Indonesia)
Dr. Syaripuddin (Mathematics, Universitas Mulawarman, Indonesia)
Dr. Tasmi (Compututational Sciences, Universitas Pertamina, Indonesia)
Dr. Toha Saifudin (Statistics, Universitas Airlangga, Indonesia)
Dr. Wahidah Sanusi (Mathematics, Universitas Negeri Makassar, Indonesia)
Dr. Wahyu Wibowo (Statistics, Institut Teknologi Sepuluh Nopember, Indonesia)
Dr. Wahyudi Setiawan (Computational Sciences, Universitas Trunojoyo Madura, Indonesia)
Dr. Windarto (Mathematics, Universitas Airlangga, Indonesia)
Dr. Yayuk Wahyuni (Mathematics, Universitas Airlangga, Indonesia)
Dr. Yeni Kustiyaningsih (Computational Sciences, Universitas Trunojoyo Madura, Indonesia)
INTERNATIONAL CONFERENCE ON MATHEMATICS, COMPUTATIONAL SCIENCES AND STATISTICS 2020

Conference date: 29 September 2020
Location: Surabaya, Indonesia
ISBN: 978-0-7354-4073-9
Editors: Cicik Alfiniyah, Fatmawati and Windarto
Volume number: 2329
Published: Feb 26, 2021
ALGEBRA AND COMBINATORICS

On the (pseudo) super edge-magic of 2-regular graphs and related graphs
Vira Hari Krisnawati, Anak Agung Gede Ngurah, Noor Hidayat and Abdul Rouf Alghofari
AIP Conference Proceedings 2329, 020001 (2021); https://doi.org/10.1063/5.0042216

Properties of adjacency matrix of the directed cyclic friendship graph
Nanda Anzana, Siti Aminah and Suarsih Utama
AIP Conference Proceedings 2329, 020002 (2021); https://doi.org/10.1063/5.0042158
The complement metric dimension of the joint graph
Liliek Susilowati, Atmim Nurrona and Utami Dyah Purwati
AIP Conference Proceedings 2329, 020003 (2021); https://doi.org/10.1063/5.0042149

Some characteristics of cyclic prime, weakly prime and almost prime submodule of Gaussian integer modulo over integer
Rina Juliana, I. Gede Adhitya Wisnu Wardhana and Irwansyah
AIP Conference Proceedings 2329, 020004 (2021); https://doi.org/10.1063/5.0042586

Some results of non-coprime graph of the dihedral group D_{2n} for n a prime power
Wahyu Ulyafandhie Misuki, I. Gede Adhitya Wisnu Wardhana, Ni Wayan Switrayni and Irwansyah
AIP Conference Proceedings 2329, 020005 (2021); https://doi.org/10.1063/5.0042587
On comb product graphs with respect to the complement metric dimension
Nirmala Mega Rosyidah, Siti Zahidah, Utami Dyah Purwati and Liliek Susilowati
AIP Conference Proceedings 2329, 020006 (2021); https://doi.org/10.1063/5.0042618

SHOW ABSTRACT

ANALYSIS AND GEOMETRY

Morrey spaces and boundedness of Bessel-Riesz operators
Saba Mehmood, Eridani and Fatmawati
AIP Conference Proceedings 2329, 030001 (2021); https://doi.org/10.1063/5.0042530

SHOW ABSTRACT

Necessary conditions for a norm estimate of Riesz potential on Morrey spaces over hypergroups
Idha Sihwaningrum, Sri Maryani and Ari Wardayani
AIP Conference Proceedings 2329, 030002 (2021); https://doi.org/10.1063/5.0042272

SHOW ABSTRACT
Stability analysis and optimal control of mathematical epidemic model with medical treatment
Abdulloh Jaelani, Fatmawati and Novi Dwi Yolanda Fitri
AIP Conference Proceedings 2329, 040001 (2021); https://doi.org/10.1063/5.0042363

Modeling pipes using pipes’ center curves of quadratic and cubic spline interpolation
Kusno
AIP Conference Proceedings 2329, 040002 (2021); https://doi.org/10.1063/5.0042248

Solving some ordinary differential equations numerically using differential evolution algorithm with a simple adaptive mutation scheme
Werry Febrianti, Kuntjoro Adji Sidarto and Novriana Sumarti
AIP Conference Proceedings 2329, 040003 (2021); https://doi.org/10.1063/5.0042351
Transformation method for solving interval linear programming problem
Herry Suprajitno and Ismail bin Mohd

AIP Conference Proceedings 2329, 040004 (2021); https://doi.org/10.1063/5.0042592

Mathematical model of deforestation effects on wildlife with Holling type-II and type-III functional response
Titin Khilyatus Sa'adah, Cicik Alfiniyah and Fatmawati

AIP Conference Proceedings 2329, 040005 (2021); https://doi.org/10.1063/5.0042160

Modeling of global warming effect on the melting of polar ice caps with optimal control analysis
E. Andry Dwi Kurniawan, Fatmawati and Miswanto

AIP Conference Proceedings 2329, 040006 (2021); https://doi.org/10.1063/5.0042360
Global analysis of a dengue hemorrhagic fever transmission model with logistics growth in human population
Anita T. Kurniawati, Fatmawati and Windarto
AIP Conference Proceedings 2329, 040007 (2021); https://doi.org/10.1063/5.0042364

Stability analysis of SIVS epidemic model with vaccine ineffectiveness
Rosita Yuliana, Cicik Alfiniyah and Windarto
AIP Conference Proceedings 2329, 040008 (2021); https://doi.org/10.1063/5.0042164

On mathematical model approach to competition dynamic of shipping companies in Surabaya
Windarto, Fatmawati and Nadiyah Nurlaily Nuzulia
AIP Conference Proceedings 2329, 040009 (2021); https://doi.org/10.1063/5.0042176

BROWSE VOLUMES
Convergence of solution function sequences of non-homogenous fractional partial differential equation solution using homotopy analysis method (HAM)
Diska Armeina, Endang Rusyaman and Nursanti Anggriani
AIP Conference Proceedings 2329, 040010 (2021); https://doi.org/10.1063/5.0042171

Furrow irrigation infiltration in various soil types using dual reciprocity boundary element method
Nur Inayah, Muhammad Manaqib and Wahid Nugraha Majid
AIP Conference Proceedings 2329, 040011 (2021); https://doi.org/10.1063/5.0042682

Crowdsourcing as a tool to elicit software requirements
Dyah Ayu Permata Sari, Araeyya Yenofa Putri, Manis Hanggareni, Annisa Anjani, M. Luthfan Oktaviano Siswondo and Indra Kharisma Raharjana
AIP Conference Proceedings 2329, 050001 (2021); https://doi.org/10.1063/5.0042134
Fuzzy sentiment analysis using convolutional neural network
Sugiyarto, Joko Eliyanto, Nursyiva Irsalinda and Meita Fitrianawati

AIP Conference Proceedings **2329**, 050002 (2021); https://doi.org/10.1063/5.0042144

Stochastic fractal search algorithm in permutation flowshop scheduling problem
Ayomi Sasmito and Asri Bekt Pratiwi

AIP Conference Proceedings **2329**, 050003 (2021); https://doi.org/10.1063/5.0042196

Public health on social media: Using Instagram posts for investigating dengue hemorrhagic fever in Indonesia
Ira Puspitasari, Rohiim Ariful and Barry Nuqoba

AIP Conference Proceedings **2329**, 050004 (2021); https://doi.org/10.1063/5.0042267
Classification of mycobacterium tuberculosis based on color feature extraction using adaptive boosting method
Aeri Rachmad, Nur Chamidah and Riries Rulaningtyas
AIP Conference Proceedings 2329, 050005 (2021); https://doi.org/10.1063/5.0042283

Expert system for digital single lens reflex (DSLR) camera recommendation using forward chaining and certainty factor
Tesa Eranti Putri, Rinno Novaldianto, Indah Werdiningsih and Barry Nuqoba
AIP Conference Proceedings 2329, 050006 (2021); https://doi.org/10.1063/5.0042292

Handwriting character recognition system in documents containing abbreviations using artificial neural networks
Kartono, Nania Nuzulita, Kenny Everest Karnama and Indah Werdiningsih
AIP Conference Proceedings 2329, 050007 (2021); https://doi.org/10.1063/5.0042128

SHOW ABSTRACT

BROWSE VOLUMES
Solving bi-objective quadratic assignment problem with squirrel search algorithm
Sri Wahyuni Ningtiyas, Asri Bekti Pratiwi and Auli Damayanti
AIP Conference Proceedings 2329, 050008 (2021); https://doi.org/10.1063/5.0042202

Evaluating the quality of a help-desk complaint management service using six-sigma and COBIT 5 framework
Army Justitia, Badrus Zaman and Dony Kurniawan Putra
AIP Conference Proceedings 2329, 050009 (2021); https://doi.org/10.1063/5.0042166

The analysis of coffee productivity and production improvement strategies in Indonesia: A system thinking approach
Adjie Suryanendra and Erma Suryani
AIP Conference Proceedings 2329, 050010 (2021); https://doi.org/10.1063/5.0042157
Unified theory of acceptance and use of technology model for user acceptance analysis of Bitcoin
Purbandini, Army Justitia and Alberto Martin Hau
AIP Conference Proceedings 2329, 050011 (2021); https://doi.org/10.1063/5.0042374

The impact of expectation confirmation, technology compatibility, and customer’s acceptance on e-wallet continuance intention
Ira Puspitasari, Alvin Nur Raihan Wiambodo and Purbandini Soeparman
AIP Conference Proceedings 2329, 050012 (2021); https://doi.org/10.1063/5.0042269

Development of lung cancer classification system for computed tomography images using artificial neural network
R. Apsari, Yudha Noor Aditya, Endah Purwanti and Hamzah Arof
AIP Conference Proceedings 2329, 050013 (2021); https://doi.org/10.1063/5.0042195
Machine learning pipeline for online shopper intention classification
Faqih Hamami and Ahmad Muzakki
AIP Conference Proceedings 2329, 050014 (2021); https://doi.org/10.1063/5.0043452

Hybrid neural network extreme learning machine and flower pollination algorithm to predict fire extensions on Kalimantan Island
N. Nalaratih, A. Damayanti and E. Winarko
AIP Conference Proceedings 2329, 050015 (2021); https://doi.org/10.1063/5.0043727

Signature image identification using hybrid backpropagation with firefly algorithm and simulated annealing
B. M. Pratama, A. Damayanti and E. Winarko
AIP Conference Proceedings 2329, 050016 (2021); https://doi.org/10.1063/5.0045303
Analysis of anti-dumping policy on steel imports using multi-input ARIMA intervention model
Prisita Nallavasthi and Siskarossa Ika Oktora
AIP Conference Proceedings 2329, 060001 (2021); https://doi.org/10.1063/5.0042169

The Fourier series estimator to predict the number of dengue and malaria sufferers in Indonesia
M. Fariz Fadillah Mardianto, Sri Haryatmi Kartiko and Herni Utami
AIP Conference Proceedings 2329, 060002 (2021); https://doi.org/10.1063/5.0042115
Bayesian hierarchical model for mapping positive patient Covid-19 in Surabaya, Indonesia
Rudianto Artiono
AIP Conference Proceedings 2329, 060003 (2021); https://doi.org/10.1063/5.0042113

Chi-square association test for microfinance-Waqf: Does business units ownership correlate with cash Waqf collected?
Siti Nur Indah Rofiqoh, Raditya Sukmana, Ririn Tri Ratnasari, Siti Maghfirotul Ulyah and Muhammad Ala’uddin
AIP Conference Proceedings 2329, 060004 (2021); https://doi.org/10.1063/5.0042168

Extending Runjags: A tutorial on adding Fisher’s z distribution to Runjags
Arifatus Solikhah, Heri Kuswanto, Nur Iriawan, Kartika Fithriasari and Achmad Syahrul Choir
AIP Conference Proceedings 2329, 060005 (2021); https://doi.org/10.1063/5.0042143
Number of flood disaster estimation in Indonesia using local linear and geographically weighted regression approach
M. Fariz Fadillah Mardianto, Sedino, Novia Anggita Aprilianti, Belindha Ayu Ardhani, Rizka Firdaus Rahmadina and Siti Maghfirotul Ulyah
AIP Conference Proceedings 2329, 060006 (2021); https://doi.org/10.1063/5.0042118

Modeling bivariate Poisson regression for maternal and infant mortality in Central Java
Alan Prahutama, Suparti, Dita Anies Munawaroh and Tiani Wahyu Utami
AIP Conference Proceedings 2329, 060007 (2021); https://doi.org/10.1063/5.0042142

Application of linear and nonlinear seasonal autoregressive based methods for forecasting Grojogan Sewu tourism demand
Winita Sulandari, Sri Subanti, Isnandar Slamet, Sugiyanto, Etik Zukhronah and Irwan Susanto
AIP Conference Proceedings 2329, 060008 (2021); https://doi.org/10.1063/5.0042129
Estimated price of shallots commodities national based on parametric and nonparametric approaches
M. Fariz Fadillah Mardianto, Nurul Afifah, Siti Amelia Dewi Safitri, Idrus Syahzaqi and Sediono
AIP Conference Proceedings 2329, 060009 (2021); https://doi.org/10.1063/5.0042119

Does US-China trade war affect the Brent crude oil price? An ARIMAX forecasting approach
Ilma Amira Rahmayanti, Christopher Andreas and Siti Maghfirotul Ulyah
AIP Conference Proceedings 2329, 060010 (2021); https://doi.org/10.1063/5.0042359

The impact of US-China trade war in forecasting the gold price using ARIMAX model
Christopher Andreas, Ilma Amira Rahmayanti and Siti Maghfirotul Ulyah
AIP Conference Proceedings 2329, 060011 (2021); https://doi.org/10.1063/5.0042361
A comparison forecasting methods for trend and seasonal Indonesia tourist arrivals time series
Subanar and Winita Sulandari
AIP Conference Proceedings 2329, 060012 (2021); https://doi.org/10.1063/5.0042130

Bi-response spline smoothing estimator for modelling the percentage of poor population and human development index in Papua Province
Dyah Putri Rahmawati, I. Nyoman Budiantara, Dedy Dwi Prastyo and Made Ayu Dwi Octavanny
AIP Conference Proceedings 2329, 060013 (2021); https://doi.org/10.1063/5.0042396

Bootstrap based T^2 chart with hybrid James Stein and SDCM for network anomaly detection
Muhammad Ahsan, Muhammad Mashuri, Hidayatul Khusna and Wibawati
AIP Conference Proceedings 2329, 060014 (2021); https://doi.org/10.1063/5.0042112
The performance of goodness of fit test procedure on geographically weighted polynomial regression model
Toha Saifudin, Fatmawati and Nur Chamidah
AIP Conference Proceedings 2329, 060015 (2021); https://doi.org/10.1063/5.0042125

Modify alpha value of EMA method and brown method: A data forecasting comparison of COVID-19
Syaharuddin, Habib Ratu Perwira Negara, Malik Ibrahim, Ahmad, Muhammad Zulfikri, Gilang Primajati, Via Yustitia, Suvriadi Panggabean, Rina Rohayu and Nurjannah Septyanun
AIP Conference Proceedings 2329, 060016 (2021); https://doi.org/10.1063/5.0042120

The determinant of entrepreneurial work for elderly in Indonesia
Sri Subanti, Arif Rahman Hakim and Winita Sulandari
AIP Conference Proceedings 2329, 060017 (2021); https://doi.org/10.1063/5.0042189
Meta regression application for detecting publication bias and variation of results in economic research
Mohtar Rasyid
AIP Conference Proceedings 2329, 060018 (2021); https://doi.org/10.1063/5.0042192

Multivariate adaptive regression spline (MARS) methods with application to multi drug-resistant tuberculosis (MDR-TB) prevalence
Septia Devi Prihastuti Yasmirullah, Bambang Widjanarko Otok, Jerry Dwi Trijoyo Purnomo and Dedy Dwi Prastyo
AIP Conference Proceedings 2329, 060019 (2021); https://doi.org/10.1063/5.0042145

Forecasting gold and oil prices considering US-China trade war using vector autoregressive with exogenous input
Siti Maghfirotul Ulyah, Christopher Andreas and Ilma Amira Rahmayanti
AIP Conference Proceedings 2329, 060020 (2021); https://doi.org/10.1063/5.0042362
Prediction of dengue infection severity using classic and robust discriminant approaches
Toha Saifudin and Windarto
AIP Conference Proceedings 2329, 060021 (2021); https://doi.org/10.1063/5.0042127

Modeling the number of confirmed and suspected cases of Covid-19 in East Java using bi-response negative binomial regression based on local linear estimator
Amin Tohari, Nur Chamidah and Fatmawati
AIP Conference Proceedings 2329, 060022 (2021); https://doi.org/10.1063/5.0042288

Fourier series estimator in semiparametric regression to predict criminal rate in Indonesia
Rini Kustianingsih, M. Fariz Fadillah Mardianto, Belindha Ayu Ardhani, Kuzairi, Amin Thohari, Raka Andriawan and Tony Yulianto
AIP Conference Proceedings 2329, 060023 (2021); https://doi.org/10.1063/5.0042123
Multi-predictor local polynomial regression for predicting the acidity level of avomango (Gadung Klonal 21)
Millatul Ulya and Nur Chamidah
AIP Conference Proceedings 2329, 060024 (2021); https://doi.org/10.1063/5.0042290

The semiparametric regression curve estimation by using mixed truncated spline and fourier series model
Helida Nurcahayani, I. Nyoman Budiantara and Ismaini Zain
AIP Conference Proceedings 2329, 060025 (2021); https://doi.org/10.1063/5.0042870

Modelling electronic money transaction volumes based on the intervention analysis
Sediono, Elly Ana and Fajar Muhammad Ardhiansyah
AIP Conference Proceedings 2329, 060026 (2021); https://doi.org/10.1063/5.0045406
Robust mean-variance portfolio selection with time series clustering
La Gubu, Dedi Rosadi and Abdurakhman
AIP Conference Proceedings 2329, 060027 (2021); https://doi.org/10.1063/5.0042172

On the computational Bayesian survival spatial DHF modelling with CAR frailty
Dwi Rantini, Ni Luh Putu Ika Candrawengi, Nur Iriawan, Irhamah and Musofa Rusli
AIP Conference Proceedings 2329, 060028 (2021); https://doi.org/10.1063/5.0042616

Pneumonia cases modeling in Java Island using two estimators of nonparametric regression for longitudinal data
Made Ayu Dwi Octavanny, I. Nyoman Budiantara, Heri Kuswanto and Dyah Putri Rahmawati
AIP Conference Proceedings 2329, 060029 (2021); https://doi.org/10.1063/5.0042763
Prediction concentration of PM2.5 in Surabaya using ordinary Kriging method

Derbi W. Fitri, Nurul Afifah, Siti M. D. Anggarani and Nur Chamidah

AIP Conference Proceedings 2329, 060030 (2021); https://doi.org/10.1063/5.0042284

Z-score standard growth chart design of toddler weight using least square spline semiparametric regression

Nur Chamidah, Budi Lestari, Anies Y. Wulandari and Lailatul Muniroh

AIP Conference Proceedings 2329, 060031 (2021); https://doi.org/10.1063/5.0042285

Classification using nonparametric logistic regression for predicting working status

Wahyu Wibowo, Rahmi Amelia, Fanny Ayu Octavia and Regina Niken Wilantari

AIP Conference Proceedings 2329, 060032 (2021); https://doi.org/10.1063/5.0043598
A self-exciting point process with cyclic component, trend component, triggering function, and response function
Hasih Pratiwi, Winda Haryanto, Sri Subanti, I. Wayan Mangku and Kiki Ferawati
AIP Conference Proceedings 2329, 060033 (2021); https://doi.org/10.1063/5.0042783

Co-Kriging method performance in estimating number of COVID-19 positive confirmed cases in East Java Province
Siti A. D. Safitri, Fajrina A. Putri, Belindha A. Ardhani and Nur Chamidah
AIP Conference Proceedings 2329, 060034 (2021); https://doi.org/10.1063/5.0042286

Fourier series estimator for predicting international market price of white sugar
N. Chamidah, S. D. Febriana, R. A. Ariyanto and R. Sahawaly
AIP Conference Proceedings 2329, 060035 (2021); https://doi.org/10.1063/5.0042287
Bootstrap based T^2 chart with hybrid James Stein and SDCM for network anomaly detection

Muhammad Ahsan, Muhammad Mashuri, Hidayatul Khusna, and Wibawati

ARTICLES YOU MAY BE INTERESTED IN

Extending Runjags: A tutorial on adding Fisher’s z distribution to Runjags
AIP Conference Proceedings 2329, 060005 (2021); https://doi.org/10.1063/5.0042143

Number of flood disaster estimation in Indonesia using local linear and geographically weighted regression approach
AIP Conference Proceedings 2329, 060006 (2021); https://doi.org/10.1063/5.0042118

Bayesian hierarchical model for mapping positive patient Covid-19 in Surabaya, Indonesia
AIP Conference Proceedings 2329, 060003 (2021); https://doi.org/10.1063/5.0042113
Bootstrap Based T^2 Chart with Hybrid James Stein and SDCM for Network Anomaly Detection

Muhammad Ahsana, Muhammad Mashurib, Hidayatul Khusnac, Wibawatid

Department of Statistics, Institut Teknologi Sepuluh Nopember, Indonesia

a Corresponding author: muh.ahsan@its.ac.id
b m_mashuri@statistika.its.ac.id
c hidayatul@its.ac.id
d wibawati@statistika.its.ac.id

Abstract. The conventional multivariate chart based on Shewhart approach will face a problem when it is utilized in monitoring the multiple outliers. To overcome the situation, the James-Stein estimator and Successive Difference Covariance Matrix can be adopted to improve the estimated mean vector and covariance matrix, respectively. Attacks in the network have a similar nature as the multiple outliers. Therefore, by improving its estimated mean vector and covariance matrix, the multivariate Hotelling’s T^2 chart can be exploited for detecting network attacks as an intrusion detection system. In this paper, the performance of the Hotelling’s T^2 is updated using the James-Stein estimator and Successive Difference Covariance Matrix estimators in monitoring network anomalies. The bootstrap resampling method is applied in estimating the control limit of the proposed IDS. Further, the reputable NSL-KDD dataset is used as a standard in assessing the proposed chart performance. The proposed IDS demonstrates a good performance for the training dataset with hit rate detection of 0.9175. Meanwhile, for the testing dataset, the proposed method excels the other charts with hit rate detection of 0.8557.

INTRODUCTION

The control chart plays a big role in controlling the quality of an industrial or manufacturing product. This method uses the statistical procedure as the main core to create graphical charts that explain the condition of the monitored process over-time. There are two main types of the control chart according to its monitored variable or quality characteristic. First, the variable control chart [1-3] is used to monitor continuous or metric data. Second, in monitoring the categorical or non-metric data, the attribute control chart [4-6] is developed. The control chart can also be classified by the number of its monitored quality characteristics. The univariate control chart is constructed to monitor one characteristic, meanwhile, the multivariate chart is suggested for multiple quality characteristics. The current development of the multivariate control chart includes Hotelling’s T^2 control chart [7-9], MCUSUM control chart [10-12] and MEWMA control chart [13, 14].

The multivariate control chart can also be applied for non-industrial process. This procedure is compatible and powerful to be employed in cyber-security as the alarm from the intruder [15]. An intrusion detection system (IDS) based on the multivariate control chart mechanism can find the sign of abnormality in the network and report it to the administrator [16]. Compared to the other approaches, the multivariate control chart has superiority in computational time. This method also does not need the prior information to detect network anomalies [17]. Based on the literature, the Hotelling’s T^2 chart is the most used control chart in IDS [18]. However, the performance of Hotelling’s T^2 chart will be reduced when it is used to observe the process that contains the multiple outliers. In
monitoring anomalies in the network, the multiple outliers can be analogous to the attacker that invade the system. Correspondingly, more intrusions are declared as the normal connection due to the masking effect produced by the presence of the outliers [19]. To overcome the situation, the improvement in the mean vector and covariance matrix estimators are needed [18].

A robust estimator can be proposed in decreasing the outcome of multiple outliers by substituting the traditional estimator. The implementation of the robust estimator is effective to improve the performance of the Hotelling’s T^2 control chart in monitoring the contaminated process [20]. The robust covariance matrix such as the successive difference covariance matrix (SDCM) is usable for this instance. The T^2 control chart performance in detecting shift increases when SDCM is combined with the chart [21, 22]. Also, T^2 control chart with SDCM can also be exploited to inspect process with the auto-correlated process [23].

To improve the mean vector estimator, minimum covariance determinant (MCD) can be executed for this case [24]. However, the high computational cost becomes a big obstacle in this matter. The shrinkage estimators can be demonstrated for this issue [25, 26]. The methods have smaller mean squared errors compared to the conventional estimators which can help the control chart to improve its performance in detecting multiple outliers. The James-Stein estimator is one of the enhanced estimators for the mean vector [27]. Its application to Hotelling’s T^2 control chart has proven produced better performance in estimating the mean vector. Reference [28] stated that the multivariate control chart performance increases to monitor shift in the mean vector when this estimator is applied.

The new problem arises when the exact distribution of the T^2 statistic with SDCM is still debatable. Some scholars such as Sullivan and Woodall [22] and Williams et al. [20] attempt to approximate the distribution of the proposed statistics. The other approaches to overcome the problem is the utilization of the non-parametric approach in calculating the statistic with the unknown distribution. Kernel density estimation (KDE) can be one solution to this problem [29, 31]. Ahsan et al. [32] used the scheme of using KDE to estimate the control limit of T^2 with SDCM. The bootstrap approach can also be used in this case. This scheme yields better performance in monitoring network anomalies compared to KDE while applied to Hotelling’s T^2 based on SDCM [33].

Therefore, this study is to propose for challenging the KDE based Hotelling’s T^2 control chart with hybrid James-Stein and SDCM [18]. Similar to the previous research, the James-Stein estimator is utilized to enhance the mean vector estimator, while the SDCM is adopted as a robust covariance matrix. Performance of the proposed method is opposed with the other multivariate charts in detecting intrusion using NSL-KDD dataset.

The rest of this research is arranged as follows: The proposed idea of T^2 control chart with James-Stein and SDCM is detailed. The bootstrap based control limit is described in section 3. Section 4 presents the dataset and algorithm used in this study. Further, the performance comparisons of the proposed IDS with the other multivariate control charts are presented in section 5. In the end, section 6 concludes the obtained results.

T^2 CHART BASED ON HYBRID JAMES STEIN AND SUCCESSIVE DIFFERENCE COVARIANCE MATRIX

In this section, the procedures of the proposed chart and its control limit calculation method using the bootstrap are presented. The James-Stein and SDCM estimators are employed in order to improve the quality of the estimated mean vector and covariance matrix for the contaminated data.

Control Chart Procedure

In this section, the James-Stein and SDCM estimators are integrated with the Hotelling’s T^2 chart to improve its performance in estimating the mean vector and covariance matrix. Let $\mathbf{Y} = \left[y_1, y_2, \ldots, y_j, \ldots, y_n^i\right]$, $i = 1, 2, \ldots, n$ represents the number of observations, the statistics of T^2 chart is calculated as follows [34]:

$$T_i^2 = (\mathbf{y}_i - \bar{\mathbf{y}})' S^{-1} (\mathbf{y}_i - \bar{\mathbf{y}}).$$

(1)
where \(\mathbf{y}_j \) is a vector with the size of \(1 \times p \) (\(p \) is the number of variable or quality characteristics) and
\[
\overline{\mathbf{y}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{y}_i
\]
and
\[
\mathbf{S} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{y}_i - \overline{\mathbf{y}})(\mathbf{y}_i - \overline{\mathbf{y}})'.
\]
The control limit of Hotelling’s \(T^2 \) when the multivariate normal assumption is fulfilled can be obtained with the following equation:
\[
CL = \frac{p(n+1)(n-1)}{n^2 - np} F_{(\alpha, p, n-p)},
\]
where \(n \) is the number of observations, \(p \) is the number of variables and \(\alpha \) is false alarm rate.

The \(T^2 \) Chart Based on Hybrid James Stein and Successive Difference Covariance Matrix (SDCM) is constructed by replacing \(\overline{\mathbf{x}} \) and \(\mathbf{S} \) in equation (1) with the James Stein and Successive Difference Covariance Matrix estimators, respectively. The SDCM is calculated using the following equation [35], [36]:
\[
\mathbf{S}_D = \frac{1}{(n-1)} \sum_{i=2}^{n} (\mathbf{y}_i - \mathbf{y}_{i-1})(\mathbf{y}_i - \mathbf{y}_{i-1})'.
\]
Contrarily, the James-Stein estimator is obtained from [28]:
\[
\overline{\mathbf{y}}_D^{JS} = \left(1 - \frac{p-2}{n(\overline{\mathbf{y}} - \mathbf{v})^T \mathbf{S}^{-1}_D (\overline{\mathbf{y}} - \mathbf{v})} \right)^+ (\overline{\mathbf{y}} - \mathbf{v}) + \mathbf{v},
\]
while the function \(f(x)^+ \) is declared as:
\[
f(x)^+ = \begin{cases} f(x), & \text{if } f(x) > 0 \\ 0, & \text{otherwise.} \end{cases}
\]
Therefore, the proposed Hotelling’s \(T^2 \) control chart based on James-Stein and SDCM can be written as:
\[
T^2_{JSD,i} = (\mathbf{y}_i - \overline{\mathbf{y}}_D^{JS}) \mathbf{S}^{-1}_D (\mathbf{y}_i - \overline{\mathbf{y}}_D^{JS}).
\]
Because the distribution of the proposed chart is still unknown, its control limits are estimated using the bootstrap resampling method. The detailed procedure for this calculation will be presented in the next subsection.

Bootstrap Control Limit

When the distribution of a random variable is unknown, the bootstrap resampling, developed by reference [37], can be applied in order to estimate the parameter of the unknown distribution. The algorithm of control limit calculation based on the bootstrap method (see Fig. 1 for illustration) is given as follows:

Algorithm of Bootstrap Control Limit

Step 1. Calculate the statistic \(T^2_{JSD,i} \) as in equation (5).

Step 2. Generate B times bootstrap samples from \(T^2_{JSD,i} \) for \(N \) observations.

Step 3. Calculate percentile \(100(1-\alpha) \) for each \(T^2_{JSD,i}^{(l)} \), \(l = 1, 2, ..., B \).

Step 4. Calculate the bootstrap control limit by taking the mean of each replication using the following formula
\[
CL_{\text{boot}} = \frac{1}{B} \sum_{l=1}^{B} T^2_{JSD,i}^{(100(1-\alpha))}
\]

060014-3
FIGURE 1. Bootstrap Control Limit Algorithm

IDS BASED T^2 CONTROL CHART WITH JAMES-STEIN AND SDCM ESTIMATORS

Algorithm of the Proposed IDS

In developing the IDS based on T^2 James-Stein and SDCM, there are two phases required to be executed. The first phase is creating a normal profile from the in-control or the normal profile. The second phase is monitoring the network traffic using the calculated statistics and control limit from phase 1.

This phase needs to calculate the mean vector, the covariance matrix and bootstrap control. The specified procedures of this phase are presented as follows:

Phase I: Calculating Normal Profile

Step 1 Create the in-control or normal connection data matrix Y_{normal}.

Step 2 Calculate the James-Stein mean vector \overline{y}_J of the matrix Y_{normal}.

Step 3 Calculate the SDCM matrix of S_{DN} as in equation (3) from Y_{normal}.

Step 4 Calculate statistics $T^2_{JSN,J}$, as in (5) from the normal connection data Y_{normal}.

Step 6 Determine α and calculate the bootstrap control limit CL_{Boots}.

In phase 2, the estimated normal profile such as: \overline{y}_J, S_{DN} and CL_{Boots} are then used. The following algorithm describes the steps of the monitoring phase:
Phase II: Monitoring

Step 1 Create a new connection data matrix Y_{test}.

Step 2 Calculate statistics $T^2_{JSDT,i}$ from new connection data Y_{test} as follows:

$$T^2_{JSDT,i} = \left(y_i - \bar{y}_i^{JS} \right)^T S^{-1}_{DN} \left(y_i - \bar{y}_i^{JS} \right),$$

Step 3 The new connection is declared as an anomaly or intrusion if $T^2_{JSDT,i} > CL_{Boots}$, else the new connection is stated as a normal connection if $T^2_{JSDT,i} \leq CL_{Boots}$.

NSL- KDD Dataset and Performance Metric

The NSL-KDD, which consists of 41 variables, with 34 quantitative and 7 qualitative variables, was applied in this research. However, only uses 32 quantitative variables is used in this research because the value of the rest of the metric data is equal to zero. The summary of NSL-KDD dataset is tabulated in Table 1. The proposed method achievement will be compared with the conventional Hotelling’s T^2 chart and T^3 based on the SDCM chart, using various control limits, as stated in [18]:

1. **F distribution control limit (CL_F)**

$$CL = \frac{p(n+1)(n-1)}{n^2 - np} F_{\left(\alpha, p, n-p\right)},$$

2. **Sullivan and Woodall (CL_{SW}) [22] control limit**

$$CL_{SW} = \frac{(n-1)^2}{n} \frac{BETA_{\left(1-\alpha, \frac{p}{2}, \frac{g-p-1}{2}\right)}}{},$$

3. **Mason and Young (CL_{MY}) [38] control limit**

$$CL_{MY} = \frac{(f-1)^2}{f} \frac{BETA_{\left(1-\alpha, \frac{p}{2}, \frac{g-p-1}{2}\right)}}{},$$

4. **Chi-square distribution (CL_{X^2}) control limit**

$$CL_{X^2} = \chi^2_{\left(1-\alpha\right), u},$$

5. **Kernel Density-based Control Limit**

$$CL_{KDE} = \hat{F}_h(t)^{-1} \left(1 - \alpha\right).$$

where $BETA_{\left(1-\alpha, \frac{p}{2}, \frac{g-p-1}{2}\right)}$ is $[1-\alpha]$-th quantile of Beta distribution, n is the number of samples, p is the number of quality characteristics, g is the shape parameter $g = \frac{2(n-1)^2}{3n-4}$, $\chi^2_{\left(1-\alpha\right), u}$ is $[1-\alpha]$-th quantile of Chi-square distribution with u degree of freedom, and $\hat{F}_h(t)$ is cumulative distribution function calculated from KDE.

Table 2 presents the confusion matrix that will be used in evaluating the performance of the proposed IDS as well as its competitor [33]. The presence of false positive (FP) in the monitored network leads to the false alarm disturbing the user convenient. On the other hand, the presence of false negative (FN) causes the actual attacks to remain undetected.
TABLE 1. Summary of NSL-KDD dataset

<table>
<thead>
<tr>
<th>Dataset Type</th>
<th>Normal</th>
<th>Intrusion</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>67,343</td>
<td>58,630</td>
<td>125,973</td>
</tr>
<tr>
<td></td>
<td>(53.46%)</td>
<td>(46.54%)</td>
<td>(100.00%)</td>
</tr>
<tr>
<td>Testing</td>
<td>9,711</td>
<td>12,832</td>
<td>22,543</td>
</tr>
<tr>
<td></td>
<td>(43.08%)</td>
<td>(56.92%)</td>
<td>(100.00%)</td>
</tr>
</tbody>
</table>

TABLE 2. Intrusion detection confusion matrix

<table>
<thead>
<tr>
<th>Actual</th>
<th>Intrusion</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TP</td>
<td>FN</td>
</tr>
<tr>
<td></td>
<td>FP</td>
<td>TN</td>
</tr>
</tbody>
</table>

This study uses three performance metrics in assessing the performance of the proposed IDS. To measure the level of accuracy, the hit rate is employed. The formula of the hit rate can be written as follows:

\[
\text{Hit Rate} = \frac{TP + TN}{TP + FN + TP + FN}.
\]

In measuring the level of misdetection, this study employs FP rate and FN rate. The mathematical forms of FP and FN rate are described as follows:

\[
FP \text{ Rate} = \frac{FP}{TN + FP},
\]

\[
FN \text{ Rate} = \frac{FN}{TP + FN}.
\]

RESULTS AND DISCUSSIONS

In detecting anomalies in the network, the proposed IDS based James-Stein and SDCM chart is compared with some control charts. To simplify the writing, the proposed IDS is written as JS-SDCM_{Boots}, conventional Hotelling’s \(T^2 \) is defined as \(T^2 \), \(T^2 \) based SDCM with \(F \) distribution control limit is written as SDCM_F, \(T^2 \) based SDCM with Sullivan and Woodall control limit is written as SDCM_{SW}, \(T^2 \) based SDCM with Mason and Young control limit is written as SDCM_{MY}, \(T^2 \) based SDCM with chi-square control limit is written as SDCM_{CH}. \(T^2 \) based James-Stein and SDCM with KDE control limit is written as JS-SDCM_{KDE}.

TABLE 3. Performance of various IDS for training data of NSL-KDD dataset

<table>
<thead>
<tr>
<th>IDS</th>
<th>Hit Rate</th>
<th>FN</th>
<th>FP</th>
<th>FN Rate</th>
<th>FP Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T^2)</td>
<td>0.91330</td>
<td>5428</td>
<td>5494</td>
<td>0.0806</td>
<td>0.0937</td>
</tr>
<tr>
<td>SDCM_F</td>
<td>0.91338</td>
<td>5417</td>
<td>5495</td>
<td>0.0804</td>
<td>0.0937</td>
</tr>
<tr>
<td>SDCM_{SW}</td>
<td>0.91705</td>
<td>4280</td>
<td>6170</td>
<td>0.0636</td>
<td>0.1052</td>
</tr>
<tr>
<td>SDCM_{MY}</td>
<td>0.91331</td>
<td>5429</td>
<td>5492</td>
<td>0.0806</td>
<td>0.0937</td>
</tr>
<tr>
<td>SDCM_{CH}</td>
<td>0.91332</td>
<td>5427</td>
<td>5492</td>
<td>0.0806</td>
<td>0.0937</td>
</tr>
<tr>
<td>JS-SDCM_{KDE}</td>
<td>0.91751</td>
<td>4115</td>
<td>6277</td>
<td>0.0611</td>
<td>0.1071</td>
</tr>
<tr>
<td>JS-SDCM_{Boots}</td>
<td>0.91750</td>
<td>4113</td>
<td>6280</td>
<td>0.0610</td>
<td>0.1071</td>
</tr>
</tbody>
</table>
Results

In this section, the performance of the proposed IDS, using bootstrap control limit, is compared with the other control charts as stated before. The monitoring results for training dataset of NSL-KDD dataset are exhibited in Table 3 and are visualized in Fig. 2. From the results, it can be considered that two approaches, JS-SDCM_{Boo} and JS-SDCM_{KDE}, have quite similar accuracy. However, for the training data set it can be concluded that the JS-SDCM_{KDE} has superiority in the lower False Negative rate. This makes the JS-SDCM_{KDE} produced a higher accuracy compared to the proposed IDS, even though the False Positive rate is the same. In addition, SDCM_{SW} has a good performance for the training dataset but it produces more false alarm that makes the lower accuracy for the approach.

![Control Chart Methods](image)

FIGURE 2. Performance of various IDS in monitoring training dataset for; a) accuracy b) error

Table 4 and Fig. 3 presents the performance comparison of the proposed chart and the other control charts for the testing data of NSL-KDD dataset. Similar to the result from the training dataset, JS-SDCM_{Boo} and JS-SDCM_{KDE}, have a quite similar performance in terms of accuracy detection. However, in the testing dataset, it can be regarded that the proposed IDS has a better performance reflected by the higher accuracy and lower False Negative. For this dataset, the lowest False Positive is owned by JS-SDCM_{KDE}.

060014-7
TABLE 4. Performance of various IDS for testing data of NSL-KDD dataset

<table>
<thead>
<tr>
<th>IDS</th>
<th>Hit Rate</th>
<th>FN</th>
<th>FP</th>
<th>FN Rate</th>
<th>FP Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>T^c</td>
<td>0.8049</td>
<td>814</td>
<td>3584</td>
<td>0.0838</td>
<td>0.2793</td>
</tr>
<tr>
<td>SDCM$_F$</td>
<td>0.8049</td>
<td>814</td>
<td>3585</td>
<td>0.0838</td>
<td>0.2794</td>
</tr>
<tr>
<td>SDCM$_{SW}$</td>
<td>0.7911</td>
<td>731</td>
<td>3978</td>
<td>0.0753</td>
<td>0.3100</td>
</tr>
<tr>
<td>SDCM$_{MY}$</td>
<td>0.8049</td>
<td>814</td>
<td>3584</td>
<td>0.0838</td>
<td>0.2793</td>
</tr>
<tr>
<td>SDCM$_{CH}$</td>
<td>0.8049</td>
<td>814</td>
<td>3584</td>
<td>0.0838</td>
<td>0.2793</td>
</tr>
<tr>
<td>JS-SDCM$_{KDE}$</td>
<td>0.8554</td>
<td>1127</td>
<td>2134</td>
<td>0.1160</td>
<td>0.1663</td>
</tr>
<tr>
<td>JS-SDCM$_{Boot}$</td>
<td>0.8557</td>
<td>1113</td>
<td>2139</td>
<td>0.1146</td>
<td>0.1666</td>
</tr>
</tbody>
</table>

FIGURE 3. Performance of various IDS in monitoring testing dataset for; a) accuracy b) error
Discussions

In this subsection, some notes and discussions about the performance of the proposed IDS is presented. Based on the monitoring results from the previous subsection, it can be stated that the proposed IDS based on Hotelling’s T^2 chart with hybrid James-Stein and SDCM estimators using bootstrap control limit has a good performance for both training and testing datasets. In training dataset, the proposed chart has a drawback in detecting the actual attacks as an intrusion symbolized by the higher FN rate compared to the KDE control limit. Consequently, the lower accuracy yields by the proposed chart. However, the proposed chart along with T^2 James-Stein chart with the KDE control limit produces the lowest FP rate compared to the other approaches. Therefore, for the training dataset, it can be said that the proposed chart has better performance in terms of low false alarm but still needs improvement in detecting the real attacks.

Different results come from the testing data of NSL-KDD dataset. For this case, the proposed chart shows its superiority to detect the real outlier compared to the other charts which can be viewed from the lowest FN rate. For this dataset, the proposed chart also produces the highest accuracy. However, the proposed chart still needs enhancement in term of higher FP rate compared to the KDE control limit. The midsection happens due to the in-control or normal connections declared as attacks.

CONCLUSION

In this study, the conventional Hotelling’s T^2 chart is enhanced by James-Stein and SDCM estimators to obtain the better mean vector and covariance matrix of the contaminated process. The control limit of the proposed chart is estimated using bootstrap resampling approach due to the unknown distribution of the proposed chart. Further, the proposed chart is applied as the intrusion detection system. Its performance in detecting network attacks is evaluated using the reputable NSL-KDD dataset for training and testing datasets.

Overall, the proposed chart demonstrating a good performance for both training and testing data of NSL-KDD dataset illustrated by the consistently high accuracy. The proposed IDS shows its excellence to the other approach in the testing dataset but has a slightly lower performance in detecting attacks in the training dataset. The multiclass detection for each type of attack with an incremental algorithm can be considered as future research. Also, some robust estimator as presented by reference [24] can be considered to improve the performance of the proposed IDS.

REFERENCES

1. W.A. Shewhart, Bell Labs Technical Journal 3, 43 (1924).
AIP Conference Proceedings

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>SUBJECT AREA AND CATEGORY</th>
<th>PUBLISHER</th>
<th>H-INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>Physics and Astronomy</td>
<td>American Institute of Physics</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>(miscellaneous)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IoT Market New Opportunities

- 10,000+ IoT Suppliers
- 1,100+ Product Categories
- Join 260,000+ Users
- Global Community

TIE2021

Apply Now
SCOPE

Today, AIP Conference Proceedings contain over 100,000 articles published in 1700+ proceedings and is growing by 100 volumes every year. This substantial body of scientific literature is testament to our 40-year history as a world-class publishing partner, recognized internationally and trusted by conference organizers worldwide. Whether you are planning a small specialist workshop or organizing the largest international conference, contact us, or read these testimonials, to find out why so many organizers publish with AIP Conference Proceedings.

Join the conversation about this journal

<table>
<thead>
<tr>
<th>Year</th>
<th>SJR</th>
<th>Citations per document</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2001</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>2002</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>2003</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>2004</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>2005</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>2006</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>2007</td>
<td>0.42</td>
<td>0.42</td>
</tr>
<tr>
<td>2008</td>
<td>0.48</td>
<td>0.48</td>
</tr>
<tr>
<td>2009</td>
<td>0.54</td>
<td>0.54</td>
</tr>
<tr>
<td>2010</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>2011</td>
<td>0.66</td>
<td>0.66</td>
</tr>
<tr>
<td>2012</td>
<td>0.72</td>
<td>0.72</td>
</tr>
<tr>
<td>2013</td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>2014</td>
<td>0.84</td>
<td>0.84</td>
</tr>
<tr>
<td>2015</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>2016</td>
<td>0.96</td>
<td>0.96</td>
</tr>
<tr>
<td>2017</td>
<td>1.02</td>
<td>1.02</td>
</tr>
<tr>
<td>2018</td>
<td>1.08</td>
<td>1.08</td>
</tr>
<tr>
<td>2019</td>
<td>1.14</td>
<td>1.14</td>
</tr>
</tbody>
</table>
My university is going to organise a conference in social science on 27-28 Oct 2021. We would like to publish our conference papers in your proceeding as our official proceeding. What are the procedures and publication fees?

Regards.

reply

Melanie Ortiz 1 month ago
Dear Kay,

thank you for contacting us.

We are sorry to tell you that SCImago Journal & Country Rank is not a publication. SJR is a portal with scientometric indicators of journals indexed in Elsevier/Scopus. Unfortunately, we cannot help you with your request, we suggest you visit the homepage or contact the editorial staff, so they could inform you more deeply.

Best Regards, SCImago Team

Ruslan 3 months ago

I have published articles on AIP, but until now I have not received confirmation for my Scopus ID, please explain. thank you

reply

Melanie Ortiz 2 months ago

Dear Ruslan,

thank you very much for your comment, unfortunately we cannot help you with your request. We suggest you contact Scopus support: https://service.elsevier.com/app/answers/detail/a_id/14883/kw/scimago/supporthub/scopus/

Best Regards, SCImago Team

Vikas 6 months ago

currently, the journal is not assigned quartile (Q indexing). When we can expect the assignment.

reply

Melanie Ortiz 6 months ago

Dear Vikas,

Thank you for contacting us. We calculate the SJR data for all the publication’s types, but the Quartile’s data are only calculated for Journals and Book Series.

Best regards, SCImago Team

Siddik 8 months ago

This will come under scopus journal list?

reply
Melanie Ortiz 8 months ago

Dear Siddik,
Thank you very much for your comment.
All the metadata have been provided by Scopus /Elsevier in their last update sent to SCImago, including the Coverage's period data. The SJR for 2019 was updated on June 2020. We suggest you consult the Scopus database directly to see the current index status as SJR is a static image of Scopus, which is changing every day.
Best Regards, SCImago Team

Hassan Yassein 9 months ago

ISSN of this journal different of ISSN in Scopus, although the data of SJR depends on the scopes

reply

Melanie Ortiz 9 months ago

Dear Hassan,
Thank you for contacting us.
SJR is a portal with scientometric indicators of journals indexed in Scopus. All the data (Title, ISSN, etc.) have been provided by Scopus /Elsevier and SCImago doesn’t have the authority over this data which are property of Scopus/Elsevier. SCImago has a signed agreement that limits our performance to the generation of scientometric indicators derived from the metadata sent in the last update (April/May 2020).

The next SCImago update will be made throughout June 2020 with the new update sent by Scopus. We suggest you wait for that date in order to see if there are any changes regarding this matter.

Best Regards, SCImago Team

Khairil 10 months ago

Is this proceeding ranked Q4?

reply

ali mohammed 11 months ago

why this journal dont have any rank yet ?
it is dont belong to Q1,2,3,4 ?

reply
Hi mam/sir,
I want to know whether this AIP conference proceeding is indexed in SCI or not?

Thanks

Khairil 1 year ago
Your IP (036.071.233.236) is blocked.
Block Reason: This IP was identified as infiltrated and is being used by sci-hub as a proxy.

How to unblock this my IP for acess AIP site?

thanks

Melanie Ortiz 1 year ago
Dear Akshya,
Thank you for contacting us. SJR is a portal with scientometric indicators of journals indexed in Elsevier/Scopus. Unfortunately, we cannot help you with your request referring the index status. We suggest you to consult Scopus database (see the current status of the journal) or other databases (like WoS). Best Regards, SCImago Team

Melanie Ortiz 11 months ago
Dear Ali,
Thank you for contacting us. We calculate the SJR data for all the publication types, but the Quartile data are only calculated for Journal type's publications. Best regards,
SCImago Team

Melanie Ortiz 1 year ago
Dear Khairil,
thank you for contacting us.
Sorry to tell you that SCImago Journal & Country Rank is not a journal. SJR is a portal with scientometric indicators of journals indexed in Elsevier/Scopus.
Unfortunately, we cannot help you with your request, we suggest you to contact the journal's editorial staff by e-mail. Best Regards, SCImago Team
Duha Ahmed 1 year ago

dear Admin

about the AIP Conference Proceeding can you see the Scopus site because the date end to 2019
is there any update about this time or change it to 2020 in the near future and you will see it in the
site of Scopus
https://www.scopus.com/sourceid/26916

I hope the AIP Conference Proceeding is still in the Scopus for 2020
with my best wishes
Miss Duha

reply

Melanie Ortiz 1 year ago

Dear Duha,

Thank you for contacting us. Unfortunately, we cannot see what will happen in the future
with this journal. Best Regards, SCImago Team

Mohammed 1 year ago

Is the (AIP Conference Proceeding) out of Scopes because I tried to search for it in Scopes and I
did not find it
Please answer me

reply

Melanie Ortiz 1 year ago

Dear Mohammed,

thank you for contacting us. You can find it in Scopus:
https://www.scopus.com/sourceid/26916

Best Regards, SCImago Team

Thanh Quang Khai Lam 1 year ago

Dear Elena Corera!
Can you tell me “Lecture notes in civil engineering” in Q4?
i don't see in Scimago.
Thank you
Melanie Ortiz 1 year ago

Dear Teo,

thank you very much for your request. You can consult that information in SJR website. Best Regards, SCImago Team
Dear Elena,

Hi

Please can we concede AIP conference proceeding as journal. What I mean, the publication type could be journal of AIP conference proceedings.

Best regards

TArik AlOmran

Dear Tarik,

Thank you very much for your comment. Unfortunately, we cannot help you with your request, we suggest you contact journal's editorial staff so they could inform you more deeply. You can find contact information in SJR website https://www.scimagojr.com

Best regards,

SCImago Team

Dear Dunia,

dear

did the AIP conference (TMREES 18) have Thomson roeters or scopus or SJR Rank or not?

reply

Dear Dunia,

Thank you very much for your comment. SCImago Journal & Country Ranks shows all the journal's available information in Open Access If you do not locate the journal in the search engine, Scopus / Elsevier has not provided us those data.
Budi Adiperdana 3 years ago

Dear Admin,

Could you please add the Quartile Rank for AIP Conference Proceedings

Best regards,
Budi

Elena Corera 3 years ago

Dear Budi, for Conferences and Proceedings the SJR is not calculated. Best Regards,
SCImago Team

Leave a comment

Name

Email
(will not be published)

Submit

The users of Scimago Journal & Country Rank have the possibility to dialogue through comments linked to a specific journal. The purpose is to have a forum in which general doubts about the processes of publication in the journal, experiences and other issues derived from the publication of papers are resolved. For topics on particular articles, maintain the dialogue through the usual channels with your editor.