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Weakly Reachability and Weakly Observability of Linear System Over Max Plus Algebra

WEAKLY REACHABILITY AND WEAKLY
OBSERVABILITY OF LINEAR SYSTEM OVER MAX
PLUS ALGEBRA

Tri Siwi Nasrulyati*, Subiono?, Erna Apriliani®

Abstract. This paper discusses about the properties of linear system in max plus algebra.
These properties are  weakly reachability and weakly observability. In this case, the asticity of
the system plays big role in these properties as the necessary and sufficient conditions.
Furthermore, we will also discuss the duality of those properties. Finally, to make the discuss
simple, we will gift the example.

Keywords and Phrases: Max plus linear system, reachability, observability..

1 INTRODUCTION

The systems are changed accordingly to changes of time. But there are also system
which are changes accordingly to changes of event. Thos a kind of systems are known as
event driven systems. Max plus algebra is a method which can formulate the driven event
systems. These systems will be linear over max plus algebra [6].

The study of max plus algebra and its linear systems are developed widely; this study is
including the theory of weakly reachability and weakly observability of the systems. The
weakly reachability means by a control system from any initial state to any other state. The
systems are controlled by using the input. The difference between reachability and
controllability is depending on the initial state. The reachability , is the controlling the system
from any initial state to any other state. But controllability is the controlling from the origin
state to any other state. The concept of the reachability in the max plus algebra is not too
different from the definitions of the controllability in continues system and the concept about
the observability in max plus algebra is also different from the observability definitions in
continues systems [3].

In this paper, we will discuss about the theory of weakly reachability and weakly
observability in the linear max plus systems. In the discussion we will use the definition of
reachable and observable set. Furthermore, we also discuss about the duality among these
properties and give them example.

1.1 Max Plus Algebra

In the section we explain the basic concept and notation. There are a lot of references
which explain about max plus algebra, the detail information can be found in [2] and [7]. In
the max plus algebra, for any a,bc R, ={-o} U{R} defined two operations, ® and ®

as follows
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a®b=max{a,b} and a®b=a+b
Definition 1. For all x,y,zeR ,,satisfies: 1) Associative concerning ® and @. 2)
Commutative concerning ® and @. 3) Distributive. 4) Zero element of @ . 5) Unit element
of ®.6) Multiplicative invert if x # ¢ then there is y such that x ® y = e and y is the one and
only. 7) Absorption element of ®. 8) ldempotent in addition.

and n e N satisfies x*" = x@x®--® x

%/—/
n times

Power in max plus algebra can be derived as multiplication in conventional algebrax®" = nx,
such that in generally satisfies as follows:
(i) If x#e,then x** =e=0 (i) if aeR, then x® =a®x  (iii) if £>0 then ¢ =¢

¢®* is undefined for k <0,

1.2 Matrix Over Max Plus Algebra
The set of matrices size nxm in max plus algebra denoted by R " with n,m e N

max

Definition 2. For xeR

ax

andn or m #0. Element 4e R % i-th row j-th column denoted by a,, or [4],, for

max

i=12,---,n and j =1,2,---,m. Matrix 4 can be written as

A1 G Ay
e ayq a?.z a,,,
an.l an.Zl e an.m

In max plus algebra operation + and x from vector and matrix are replaced with @ and ®
@ from vector and matrices are replaced with @ and ®.

Definition 3.
1) For any ABeR and aeR define an addition operation A4® Bas

[A4® B]l..j =a,, (-Bbl..j = max(a,._j ,bl..j)
2) For 4,eRF and BeR 7" then we define operation 4® B as
p
[4®B], = D(a, ® b, )zrrk]ax {a, ® b, }= max {a, + b,w.}
k=1 ep €p
3) The transpose of matrix 4 denoted by 4" and defined as usual we find in conventional
algebra by [4"],, =[4] ;-
4) Identity matrix of size nxn in max plus is denoted by E and define as
e jikai=j
[E]i.j :{ L
e jikai#j
5) For square matrix and k<N, k-th power of 4 denoted by A% and defined as
A =A@ A®A..®4 ,for k=0,4" =E,.

n

k kali
6) Formatrix 4eR . andscalara eR , , a ® A define by

[a®A];=a®[4],, For i=12,---,nand j=1,2,---,m.
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1.3 Linear Max plus System

Let the discrete event system be the event driven systems with a discrete state (as in
production system, storage with finite capacity system, railway system, logistic system and so

on). This state is described by the equation below:
x(k+1) = AQx(k) ® BQu(k) Q)

y(k)=C®x(k) @
With 4eR”" BeR"" CeR%" and x represents the state, u represents the input and y

represents the output, & is the event index which are £ = 0, 1, 2 .... Both equation (1) and (2)
are called by linear max plus system [6].

2. REACHABILITY

In this section discuss the discrete event systems which are formulated in to max plus
algebra, so we get the linear one. This discussion will be done in the systems that many
reaches a final condition with all of it component are greater than the final one without any
input. This kinds of system later known by weakly reachable system. Using (1) in recursive
fashion, the state system can be written to each event index £ = 7, 2... q, as follows:

For k=0then x(1)=4® Xx(0)® B®U(1)
For k=1 then x(2)=4® X(1) ® BRU(2) =4>X(0)® ABU(1) ® BU(2)
For k=2 then x(3)= 4® X(2)® BOU(3) = 4°X(0)® A2BU(l) ® ABU(2) ® BU(3)
S0, to g-step event we get:
X(q) = A'® X(0)®[BABAB - 47B|®[U(g) U(g-1) Ulg—2) U©Q-3) - U] @
From (3) we obtain the reachability matrix notated by ~, =[8 4B 4%B --- 4**B]. This matrix

is the one which influence the reachability of the system, the input series defined by
U,=lU,U,, U], so the state of g-step event can be written by:

X(q)=A4'®X(0)® I, ®U, (4

Definition 4. Reachable State. Given x(0)eR ", astate X eR" is reachable in g-step from

max ’

X (0) if there exists a control sequence{uU (1),U(2),---,U(¢)} <R . » Which achieves x = x(g).

Definition 5. Reachable Set. Let x(0)eR"_ , be the initial condition, the set of all of the

max !

state X eR" that can be reached at g-step event (with g should be positive integer) is
defined as follows:

Q, 0 ={XeR"X=4"®X(0)®I,®U, Where U eR/¥

max

Theorem 1. Given an initial state X (0)eR |, and astate X € Q if and only if

g.X(0)
X=I,®-IT®X)®A4’®X(0) ()
In which case -7 ® x =U, is acontroller drives state from x(0) to x = x(q).

Proof. If XeQ,_ ., then according Definition 1, there is U, such that the g-step state
X=4"®X(0)®I,®U,, is reached. Because of that 1, ®U, <.x. From [2] and [7], we get
U, =-TI, ® X is the biggest solution, then / ® (-1'7 & x) < x . SO we get

r,®U,<I,®(-I, ®X)<X (6)
With adding 47 ® X(0) to each term in (6), we obtain:
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A'RXO0)®I, ®U, <A'@X(0)®I', ®(-I', ® X)< A’ @X(0) DX
Then we can write that ", ® (-I"7 ® X)® 4’ ® X(0) = X , S0 equation (5) satisfied.
In max plus case, different from the continuo one, because the maximum operation,
A’®Xx(0)er, ®U, could not be equal to the states which are less than 4’ ® x(0). In this

paper, we focus the analyzing at the systems which reach a state with all of the components
that greater than the final state. The condition of the system is called weakly reachable
system.

Definition 6. Q-step Weakly Reachable [3]. A system is said to be g-step weakly reachable,
if given any X(0), a controller sequence exist such that each component of the terminal state

X(q) can be made greater than the unforced terminal state 47 ® X(0), there exist U, such
that (X(g)), > (4" ® Xx(0)), for j=12,---,n.

Before we discuss more about the weakly reachability, we will give the definition as
acticity first.
Definition 7. Asticity [3]. A nxm G ={g,}, Is termed row astic if for each row i =12,---,n,
®”,g,eR.  Matrix G is termed column astic if for each column j=12,..,m the
@, g, €R. A matrix is termed doubly astic if it in both row and column astic.

This asticity property is necessary and sufficient condition for the system to be called
as weakly reachability or weakly observability.

Theorem 2. [3] A system is g-step weakly reachable if and if 7, is row astic.

Proof. If I, is row astic, with a great enough U,, (I,®U,),>(4‘®X(0), for
j=212,---,n. From the Definition 6 if a system q-step weakly reachable, then
(r,®U,), > (4’ ® x(0)),should be satisfied. So (I, ®U,) should be finite for each j, because
of that I", has to be row astic. Then the system is g-step weakly reachable.

Actually, row astic condition for the reachability matrix 7, is needed to find that

there is as least an input for each state internal transition systems. Cayley-Hamilton theorem
in max plus can be used to show that if a system is not weakly reachable at g-step, then
the system is also not weakly reachable at step which are more than g.

3. OBSERVABILITY

A system is observable if there is a final state of the system that can to determine from
the measurement of the output. Because the inverse concerning the addition operator is not
existing, cause the observability of the system in max plus algebra is limited. From (2) we
can write a sequence g-step output as follows:

Y(0) C & & e ¢ e U(0)

Y@ CcA CB e e ¢ € U@

Y(2) |=| c4* | X(0)®| C4B CB ¢ € U(2) )
: : : : R :

Y(g-1)| |ca? CA?B CA"® ... CAB CB||U(g-1)

From (7) we can write the notation of the output sequence simpler, that is
Y, =[r0 Y@ y@ - Y@@-1], vU,=[U© U@ U@ - U@g-1]. We can also
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obtain-step observability matrix, o =[c c4 c4® ... car] and matrix
CB & e - €
H, =| CAB CB & - ¢
CA“?B CA"*B --- CAB CB
So equation (7) can write in the different way as follows:
Y(9)=0 ®X0)®H,®U, ®)
With the same recursively way, from (1) and (2) we obtain:
Y (k) C & & & & € U (k)
Y(k+1) CA CB & & € € U((k+1)
Y(k+2) |=| CA? |X(k)®| CAB CB € e Uk+2) |(9)
: : : : Yoee & :
Y(k+q-1) Cc4! CA?B CA"® ... CAB CB||U(k+q-1)
From (9) we can write the notation of the output sequence simpler, that is
Y, =[Y(k) Y(k+1) - Y(k+q-D],U,=[U(k) UGk+1) - Uk+q-1], We can also obtain-step
observability matrix, q :[c CA CA% ... CAH]T and matrix
g g g e g
CB £ g e £
H,=| CAB CB g e &
: P e
CA?B CA**B --- CAB CB
So equation (9) can write in the different way as follows:
Y(q)=0 ®X(k)®H, U, 9)

To start the discussion, we define the output of the system as the observation output that can
be explain next.

Definition 8. [3] The observation output Y(¢)eR™“ is the output which is given by
Y(9)=0,®X(k)®H,®U, With U eR 7 and x(0) e R nax-

Gathering all of the output sequence, we will be directed to the next definition.

Definition 9. The set of Observable output sequence [3].

Let be given a positive integer p and U, eRZ¥™ is an input sequence, then
Y o =Y, eR"™ ¥ (q) =0, ®X()®H,®U, With x(0) e Rmx IS the set of observable output
sequence.

Considering the necessary and sufficient condition, we can find whether an output
sequence is an observable output.

Theorem 3. Given a sequence Y(q)eR™ and an input sequence U, eRp " then
Y(9)eY. . ifandonly if
.
0®(-0 ®Y)®H, ®U, =Y, (10)

Proof. The proof is similar in nature and with the proof of Theorem 2.1.
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Definition 10. Latest Event-Time State [3]. Given a g-length sequence of
observed outputs Y, , with a sequence of inputs U_, the latest event-time state y(k)

which results in Y, is
y(k):rL]%g({X(k)eﬁgqax Y, =0, ®X(k)®H, ®U,} 12)
where the max is over each component.
Because the latest event-time state should be infinite, then y(k) define to

be in Rma. This infinite output sequence state does not give any information about
the systems state. So, we define e finite latest event-time state of the systems,
which direct to the definition of weakly observability.

Definition 11. Q-step Weakly Observable [3]. A system is g-step weakly
observable if for any g-length sequence of observed outputs v <> ., the latest

event-time state y(k) is finite and can be computed from Y.

A necessary and sufficient condition for a system to g-step weakly observable is
given next.

Theorem 4. [3] A system is g-step weakly observable if only if O column astic.

Proof. If Qs column astic, then Y, is finite y(k)=-Q' ® v, is finite too. For every
Y, e,y » With Theorem 3.1 we get that 0 ® (-0' ®'v,)® H,®U, =, . Furthermore y(k)is

an observable output sequence in the other side, if system is g-step weakly observable. The
final state should be finite and can computed from the observable output sequence Y, . By

Theorem 3.1 we obtain 0 ®(-0" ® ¥,)®@H,®U, =Y,. S0 in order y(x)=-0"' ®'y, to be
finite, matrix 0, should be column astic.
As continues variable, in max plus algebra we also have the duality of weakly

reachable and weakly observable. Duality means that the property of weakly reachable can
found from the property of weakly observable, vice versa.

Example: Given a system with matrix:

e ¢ 0 0
A=[3 ¢ 2,B=|2|danC=(¢ 0 ¢)
e 0 ¢ &

We will investigate the property of system, whether its weakly reachable or weakly
observable ?

1) Reachability matrix at 2-step, we obtain:
0 max(e+0,6+2,0+¢) 0 ¢
r,=[B 4B]=[B 4®B]=|2 max(3+0,6+22+¢ |=|2 3
e max(e+0,0+2,¢+¢) e 2
Shown that at 2-step, the system is weakly reachable. For 3-step, we obtain the
reachability matrix as:

r,=[B 48 4’B|=[p 4®B 4%]
0 max(e+0,6+3,6+2) max(e+e,e+3,0+2) 0 ¢ 2
=12 max(3+0,e+2,2+¢) max(e+e,6+3,0+2)|(=|2 3 4}
e max(3+0,e+2,2+¢) max(e+3,3+¢,2+2) e 2 3
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For 4-step, we obtain the reachability matrix as:
r,=[p 48 4B 4°Bl=[p 4®B 4%®B 4%]

0 max(e+0,6+2,0+¢) max(e+e,e+30+2) --- 0 ¢ 2 3
=12 max(3+0,6+22+¢) max(e+33+¢2+2) ---|={2 3 4 5
e max(e+0,0+2,e+¢) max(e+e0+3,e+2) --- ¢ 2 3 4

Shown that for 3-step, 4-step and so on the system is always weakly reachable.
2) Observability matrix at 2-step, we obtain:

Q- C 3 & 0 & (e 0 ¢
“\lca) max(e +&,0+3,6+¢) max(e+e0+e,e+¢e) max(e+0,0+2,6+¢) 13 e 2

Shown that at 2-step, the system is weakly observable. For 3-step, we obtain the
robservability matrix as:

C e 0 e ¢ 0
Q=| CA |=|max(e+¢&0+3,e+¢) max(e+e0+e,e+¢e) max(e+0,0+2,e+¢) =3 ¢
CA? max(3+e,6+3,2+¢) max(3+¢,e+62+0) max(3+0,e+22+¢)) (e 2
For 4-step, we obtain the observability matrix as:
C g 0 P ¢ 0 ¢
o-| | max(e +¢,0+3,6+2) max(e+00+ee+e) max(z+00+2¢e+e)| |3 & 2 Shown
* ol ca? max(3+¢e,e+¢2+¢) max(3+e,e+¢62+0) max(3+0,6+22+¢)| |e 2 3
c4? max(e+¢,2+3,3+¢) max(e+¢2+¢3+0) max(e+02+22+¢)) \5 3 4

that for 3-step, 4-step and so on the system is always weakly observable.

From 1) and 2) we get that the system had weakly reachable and weakly observable
since 2-step. Because I, is row astic and G is column astic. Matrix /’;and I", also row

astic, matrixQ,and O, are column astic too. We can conclude, for step-q with g >2the
system should be weakly reachable and weakly observable.

4. CONCLUTION AND FUTURE WORK

From the discussion, we obtain that the necessary and sufficient condition of weakly
reachable is the row astic of its reachability matrix. Then the necessary and sufficient
condition of weakly observable is the column astic of its observability matrix. If at g-step the
system is weakly reachable or weakly observable, then for step-(g+1), step-(q+2), and so on
the system will should be weakly reachable or weakly observable. For the future work, the
discussion could be explored the strongly observable and reachable of the system. And can to
determine for finite step for system is weakly reachable or weakly observable.
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