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WEAKLY REACHABILITY AND WEAKLY 
OBSERVABILITY OF LINEAR SYSTEM OVER MAX 

PLUS ALGEBRA  
 

Tri Siwi Nasrulyati1, Subiono2, Erna Apriliani3 

 

 
Abstract.  This paper discusses  about  the properties of linear system in max plus algebra. 
These properties are   weakly reachability and weakly observability. In this case, the asticity of 
the system plays big role in these properties as the necessary and sufficient conditions. 
Furthermore, we will also discuss the duality of those properties. Finally, to make the discuss 
simple, we will gift the example. 
 
Keywords and Phrases: Max plus linear system, reachability, observability..  
 
 
 

1. INTRODUCTION 

The systems are changed accordingly to changes of time. But there are also system 
which are changes accordingly to changes of event. Thos a kind of systems are known as 
event driven systems. Max plus algebra is a method which can formulate the driven event 
systems. These systems will be linear over max plus algebra [6].   

The study of max plus algebra and its linear systems are developed widely; this study is 
including the theory of weakly reachability and weakly observability of the systems. The 
weakly reachability means by a control system from any initial state to any other state. The 
systems are controlled by using the input. The difference between reachability and 
controllability is depending on the initial state. The reachability , is the controlling the system 
from any initial state to any other state. But controllability is the controlling from the origin 
state to any other state. The concept of the reachability in the max plus algebra is not too 
different from the definitions of the controllability in continues system and the concept about 
the observability in max plus algebra is also different from the observability definitions in 
continues systems [3]. 

In this paper, we will discuss about the theory of weakly reachability and weakly 
observability in the linear max plus systems. In the discussion we will use the definition of 
reachable and observable set. Furthermore, we also discuss about the duality among these 
properties and give them example. 

1.1 Max Plus Algebra 

In the section we explain the basic concept and notation. There are a lot of references 
which explain about max plus algebra, the detail information can be found in [2] and [7]. In 
the max plus algebra, for any { } { }RR ∪∞−=∈ max,ba   defined two operations, ⊕ and ⊗  
as follows 
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},{max baba =⊕       and         baba +=⊗  
Definition 1. For all max,, R∈zyx satisfies: 1) Associative concerning ⊗ and .⊕ 2) 
Commutative concerning ⊗ and .⊕ 3) Distributive. 4)  Zero element of .⊕ 5) Unit element 
of .⊗ 6) Multiplicative invert if ε≠x  then there is y such that eyx =⊗  and y is the one and 
only. 7) Absorption element of  .⊗  8) Idempotent in addition. 
Definition 2.  For maxR∈x and N∈n satisfies 

4434421
L

timesn

n xxxx ⊗⊗⊗=⊗
 

Power in max plus algebra can be derived as multiplication in conventional algebra nxx n =⊗ , 
such that in generally satisfies as follows: 
 (i) If ,ε≠x then 00 ==⊗ ex     (ii) if R∈α , then xx ⊗=⊗ αα     (iii) if 0>k  then εε =⊗k

, 
k⊗ε  is undefined for ,0≤k  

1.2 Matrix Over Max Plus Algebra 
The set of matrices size mn×  in max plus algebra denoted by  mn×

maxR  with N∈mn,  
and 0or ≠mn . Element mnA ×∈ maxR   i-th row j-th column denoted by jia .  or jiA .][   for  

ni ,,2,1 L=  and mj ,,2,1 L= . Matrix A can be written as  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

mnnn

m

m

aaa

aaa
aaa

A

.21.1.

.22.21.2

.12.11.1

L

OMM

L

L

 
In max plus algebra operation + and ×  from vector and matrix are replaced with ⊕  and ⊗   
⊕  from vector and matrices are replaced with ⊕  and .⊗  

Definition 3.  
1) For any  mnBA ×∈ max, R  and R∈a  define an addition operation BA⊕ as   

),max(][ ..... jijijijiji babaBA =⊕=⊕   

2) For pnA ×∈ max, R  and mpB ×∈ maxR   then we define operation BA⊗  as   

[ ] ( ) { } { }k,ji,k
pk

k,ji,k
pk

jkι,k

p

k
ι,j bababaΒΑ +=⊗=⊗=⊗

∈∈=
⊕ maxmax,

1

 

3) The transpose of matrix A denoted by  TA  and defined as usual we find in conventional 
algebra by ijji

T AA .. ][][ = . 
4)  Identity matrix of size nn×  in max plus is denoted by  nE  and define as   

⎩
⎨
⎧

≠
=

=
ji
j ie

E ji jika
 jika

][ . ε  
5) For square matrix and  N,∈k  k-th power of A denoted by kA⊗  and defined as 

444 3444 21 K
kalik

k AAAAA ⊗⊗⊗=⊗  , for  nEAk == ⊗0,0 .  

6)  For matrix  mnA ×∈ maxR  and scalar maxR∈α , A⊗α  define by  
       jiA .i.j ][A][ ⊗=⊗ αα    For  ni ,,2,1 L=  and   mj ,,2,1 L= .  
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1.3 Linear Max plus System 

 Let the discrete event system be the event driven systems with a discrete state (as in 
production system, storage with finite capacity system, railway system, logistic system and so 
on). This state is described by the equation below: 

(2) )()(
(1)   )()()1(

kxCky
kuBkxAkx

⊗=
⊗⊕⊗=+  

With npnmmn CBA ××× ∈∈∈ maxmaxmax ,, RRR  and x represents the state, u represents the input and y 
represents the output, k is the event index which are k = 0, 1, 2 …. Both equation (1) and (2) 
are called by linear max plus system [6]. 

2. REACHABILITY 

 In this section discuss the discrete event systems which are formulated in to max plus 
algebra, so we get the linear one. This discussion will be done in the systems that many 
reaches a final condition with all of it component are greater than the final one without any 
input. This kinds of system later known by weakly reachable system. Using (1) in recursive 
fashion, the state system can be written to each event index k = 1, 2... q, as follows: 

For k=0 then )1()0()1( UBXAX ⊗⊕⊗=
 For k=1 then )2()1()0()2()1()2( 2 BUABUXAUBXAX ⊕⊕=⊗⊕⊗=  

For k=2 then )3()2()1()0()3()2()3( 23 BUABUBUAXAUBXAX ⊕⊕⊕=⊗⊕⊗=  
so, to q-step event we get: 

[ ] [ ] )3()1()3()2()1()()0()( 12 Tqq UQUqUqUqUBABAABBXAqX LL −−−⊗⊕⊗= −      

From (3) we obtain the reachability matrix notated by ].[ 12 BABAABBΓ q
q

−= L  This matrix 
is the one which influence the reachability of the system, the input series defined by 

T
qqq UUUU ][ 11 L−= , so the state of q-step event can be written by: 

)4()0()( qq
q UΓXAqX ⊗⊕⊗=  

Definition 4.  Reachable State. Given nX max)0( R∈ , a state  nR∈X  is reachable in q-step from 
)0(X  if there exists a control sequence max)}(,),2(),1({ R∈qUUU L , which achieves  ).(qXX =  

Definition 5. Reachable Set.  Let nX max)0( R∈ , be the initial condition, the set of all of the 
state nR∈X  that can be reached at q-step event (with q should be positive integer) is 
defined as follows:  

,)0(:{)0(. qq
qn

Xq UΓXAXX ⊗⊕⊗=∈=Ω R  where  }max
qp

qU ×∈R  

Theorem 1. Given an initial state  
n
max)0( R∈X  and a state )0(.XqX Ω∈   if and only if   

)5()0()( XAXΓΓX qT
qq ⊗⊕⊗′−⊗=                         

In which case  q
T
q UXΓ =⊗′−  is a controller drives state from )0(X  to ).(qXX =  

Proof.  If )0(.XqX Ω∈ , then according  Definition 1,  there is  qU  such that the q-step state 

qq
q UΓXAX ⊗⊕⊗= )0( , is reached. Because of that  .XUΓ qq ≤⊗  From [2] and [7], we get 

XΓU T
qq ⊗′−=  is the biggest solution, then XXΓΓ T

qq ≤⊗′−⊗ )( . So we get   
)6()( XXΓΓUΓ T

qqqq ≤⊗′−⊗≤⊗                         

With adding  )0(XAq ⊗  to each term in (6), we obtain: 
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XXAXΓΓXAUΓXA qT
qq

q
qq

q ⊕⊗≤⊗′−⊗⊕⊗≤⊗⊕⊗ )0()()0()0(  
Then we can write that XXAXΓΓ qT

qq =⊗⊕⊗′−⊗ )0()( , so equation (5) satisfied.          

In max plus case, different from the continuo one,  because the maximum operation,  
qq

q UXA ⊗Γ⊕⊗ )0(  could not be equal to the states which are less than  ).0(XAq ⊗  In this 
paper, we focus the analyzing at the systems which reach a state with all of the components 
that greater than the final state. The condition of the system is called weakly reachable 
system. 

Definition 6. Q-step Weakly Reachable [3]. A system is said to be q-step weakly reachable, 
if given any X(0), a controller sequence exist such that each component of the terminal state 
X(q) can be made greater than the unforced terminal state ),0(XAq ⊗  there exist qU  such 
that  j

q
j XAqX ))0(())(( ⊗>  for  nj ,,2,1 L= . 

Before we discuss more about the weakly reachability, we will give the definition as 
acticity first. 

Definition 7. Asticity [3]. A }{ ijGmn g=× , is termed row astic if for each  row ni ,,2,1 L= , 
R.∈⊕ = ij

m
j g1   Matrix G  is termed column astic if for each column  mj ,,2,1 L=  the 

R.∈⊕ = ji
m
i g1  A matrix is termed doubly astic if it in both row and column astic.  

 This asticity property is necessary and sufficient condition for the system to be called 
as weakly reachability or weakly observability. 

Theorem 2.  [3] A system is q-step weakly reachable if and if  qΓ  is row astic. 

Proof. If qΓ  is row astic, with a great enough qU , j
q

jqq XAUΓ ))0(()( ⊗>⊗ ,  for  
nj ,,2,1 L= . From the Definition 6 if a system q-step weakly reachable, then 

j
q

jqq XAUΓ ))0(()( ⊗>⊗ should be satisfied. So jqq UΓ )( ⊗ should be finite for each j, because 
of that  qΓ  has to be row astic. Then the system is q-step weakly reachable. 

 Actually, row astic condition for the reachability matrix qΓ  is needed to find that 
there is as least an input for each state internal transition systems. Cayley-Hamilton theorem 
in max plus can be used to show that if a system is not weakly reachable at       q-step, then 
the system is also not weakly reachable at step which are more than q. 

3. OBSERVABILITY 

A system is observable if there is a final state of the system that can to determine from 
the measurement of the output. Because the inverse concerning the addition operator is not 
existing, cause the observability of the system in max plus algebra is limited. From (2) we 
can write a sequence q-step output as follows: 

)7(

)1(

)2(
)1(
)0(

)0(

)1(

)2(
)1(
)0(

321

2

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⊕

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

− −−− qU

U
U
U

CBCABCABCA

CBCAB
CB

X

CA

CA
CA
C

qY

Y
Y
Y

qqq

M

L

LOMM

L

MM εε
εε
εεεε
εεεεε

 
From (7) we can write the notation of the output sequence simpler, that is 

[ ] ,)1()2()1()0( T
q qYYYYY −= L  [ ] .)1()2()1()0( T

q qUUUUU −= L  We can also 
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obtain-step observability matrix, [ ]Tq
q CACACAC 12 −= LO  and matrix 

 ⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−− CBCABBCABCA

CBCAB
CB

H

qq

q

L

OLMM

L

L

L

32

ε
εε
εεε
εεεε

 
So equation (7) can write in the different way as follows: 

)8()0()( qqq UHXqY ⊗⊕⊗= O  
With the same recursively way, from (1) and (2) we obtain: 

)9(

)1(

)2(
)1(

)(

)(

)1(

)2(
)1(

)(
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+

+
+

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⊕

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+

+
+

−−− qkU

kU
kU

kU

CBCABCABCA

CBCAB
CB

kX

CA

CA
CA
C

qkY

kY
kY

kY

qqq

M

L

LOMM

L

MM εε
εε
εεεε
εεεεε

 

From (9) we can write the notation of the output sequence simpler, that is 
[ ] ,)1()1()( T

q qkYkYkYY −++= L [ ] ,)1()1()( T
q qkUkUkUU −++= L  we can also obtain-step 

observability matrix, [ ]Tq
q CACACAC 12 −= LO  and matrix 

 ⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−− CBCABBCABCA

CBCAB
CB

H

qq

q

L

OLMM

L

L

L

32

ε
εε
εεε
εεεε

 
So equation (9) can write in the different way as follows: 

)9()()( qqq UHkXqY ⊗⊕⊗= O  
To start the discussion, we define the output of the system as the observation output that can 
be explain next. 

Definition 8.  [3] The observation output qmqY ×∈R)(  is the output which is given by  

qqq UHkXqY ⊗⊕⊗= )()( O  with )(qp
qU 1

max
−×∈R  and n

X max)0( R∈ .       
Gathering all of the output sequence, we will be directed to the next definition.    

Definition 9. The set of Observable output sequence [3].  

Let be given a positive integer p and  )(qp
qU 1

max
−×∈R  is an input sequence, then  

qqq
qm

qUq UHkXqYY
q

⊗⊕⊗=∈= ×∑ )()(:{. OR  
with n

X max)0( R∈  is the set of observable output 
sequence.  

 Considering the necessary and sufficient condition, we can find whether an output 
sequence is an observable output. 

Theorem 3.  Given a sequence qmqY ×∈R)(  and an input sequence )(qp
qU 1

max
−×∈R  then  

∑∈ UqqqY .)(  if and only if 
            )10()( '

qqqq
T

qq YUHY =⊗⊕⊗−⊗ OO  

Proof. The proof is similar in nature and with the proof of Theorem 2.1. 
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Definition 10. Latest Event-Time State [3]. Given a q-length sequence of 
observed outputs qY , with a sequence of inputs qU , the latest event-time state )(kγ  
which results in qY  is  

)11(})(:)({max)( max
)0( qqqq

n

X
UHkXYkXk ⊗⊕⊗=∈= ORγ     

where the max is over each component. 

 Because the latest event-time state should be infinite, then )(kγ  define to 

be in 
n
maxR . This infinite output sequence state does not give any information about 

the systems state. So, we define e finite latest event-time state of the systems, 
which direct to the definition of weakly observability. 

Definition 11. Q-step Weakly Observable [3]. A system is q-step weakly 
observable if for any q-length sequence of observed outputs ∑∈ UqqqY . , the latest 
event-time state )(kγ  is finite and can be computed from .qY  

A necessary and sufficient condition for a system to q-step weakly observable is 
given next. 

Theorem 4. [3] A system is q-step weakly observable if only if qO column astic. 

Proof. If qO is column astic, then qY  is finite q
T

q Yk ')( ⊗−= Oγ  is finite too. For every 

∑∈ UqqqY . , with Theorem 3.1 we get that qqqq
T

qq YUHY =⊗⊕⊗−⊗ )( 'OO . Furthermore )(kγ is 
an observable output sequence in the other side, if system is q-step weakly observable. The 
final state should be finite and can computed from the observable output sequence .qY  By 
Theorem 3.1 we obtain qqqq

T
qq YUHY =⊗⊕⊗−⊗ )( 'OO . So in order  q

T
q Yk ')( ⊗−= Oγ  to be 

finite, matrix qO should be column astic.  
 As continues variable, in max plus algebra we also have the duality of weakly 
reachable and weakly observable. Duality means that the property of weakly reachable can 
found from the property of weakly observable, vice versa. 

Example: Given a system with matrix: 

( )εε
εεε

ε
εε

0Cdan2
0

,
0

23
0

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
= BA

 
We will investigate the property of system, whether its weakly reachable or weakly 
observable ? 
 
1) Reachability matrix at 2-step, we obtain: 

[ ] [ ]
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+++
+++
+++

=⊗==
2
32

0

),20,0max(
2,2,03max(2

)0,2,0max(0

2

ε

ε

εεεε
εε
εεε

BABABBΓ   

Shown that at 2-step, the system is weakly reachable. For 3-step, we obtain the 
reachability matrix as: 

[ ] [ ]

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++++++
++++++
++++++

=

⊗== ⊗

32
432
20

)22,3,3max()2,2,03max(
)20,3,max()2,2,03max(2
)20,3,max()2,3,0max(0

22
3

ε

ε

εεεεε
εεεεε
εεεεεε

ABABBAABBΓ

 



Tri Siwi Nasrulyati1, Subiono2, Erna Apriliani3 

NO1 - 7 
 

For 4-step, we obtain the reachability matrix as: 
[ ] [ ]

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++++++
++++++
++++++

=

⊗⊗== ⊗⊗

432
5432
320

)2,30,max(),20,0max(
)22,3,3max()2,2,03max(2
)20,3,max()0,2,0max(0

3232
4

ε

ε

εεεεεεε
εεεε

εεεεεε

L

L

L

BABABABBABAABBΓ

 

Shown that for 3-step, 4-step and so on the system is always weakly reachable.  

2) Observability matrix at 2-step, we obtain: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+++++++++

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

23
0

),20,0max(),0,max(),30,max(
0

2 ε
εε

εεεεεεεεεεεε
εε

CA
C

O

 
Shown that at 2-step, the system is weakly observable. For 3-step, we obtain the 
robservability matrix as: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+++++++++
+++++++++=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

32
23

0

)2,2,03max()02,,3max()2,3,3max(
),20,0max(),0,max(),30,max(

0

2
3

ε
ε

εε

εεεεεεεε
εεεεεεεεεεεε

εε

CA
CA
C

O

 For 4-step, we obtain the observability matrix as: 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+++++++++
+++++++++
+++++++++

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

435
32
23

0

)2,22,0max()03,2,max()3,32,max(
)2,2,03max()02,,3max()2,,3max(
),20,0max(),0,0max()2,30,max(

0

3

24 ε
ε

εε

εεεεεεεε
εεεεεεεεε
εεεεεεεεεε

εε

CA
CA
CA
C

O
    Shown 

that for 3-step, 4-step and so on the system is always weakly observable.  

 From 1) and 2) we get that the system had weakly reachable and weakly observable 
since 2-step. Because  2Γ  is row astic and 2O is column astic. Matrix 3Γ and 4Γ  also row 
astic, matrix 3O and 4O are column astic too. We can conclude, for step-q with 2≥q the 
system should be weakly reachable and weakly observable. 
 

4. CONCLUTION AND FUTURE WORK 
From the discussion, we obtain that the necessary and sufficient condition of weakly 

reachable is the row astic of its reachability matrix. Then the necessary and sufficient 
condition of weakly observable is the column astic of its observability matrix. If at q-step the 
system is weakly reachable or weakly observable, then for step-(q+1), step-(q+2), and so on 
the system will should be weakly reachable or weakly observable. For the future work, the 
discussion could be explored the strongly observable and reachable of the system. And can to 
determine for finite step for system is weakly reachable or weakly observable. 
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