On The Structural Properties of Latin Square in Max-Plus Algebra

Muhammad Syifa'ul Mufid, Subiono

Abstract— Matrices L of size $n \times n$ are called Latin square if every column and every row of L contain n different numbers. And, Max-Plus Algebra is algebraic system using two operations, max and plus. In this paper, we derive some properties of a Latin square in Max-Plus Algebra and their eigenvalues and corresponding eigenvector.

Index Terms— Latin square, Max-Plus Algebra, Eigenvalue, Eigenvector.

I. INTRODUCTION

A Latin square of order *n* is square matrix of size $n \times n$ such that every row and every column has *n* distinct numbers. For convenience, we use $\underline{n} = \{1, 2, ..., n\}$. The notion of Latin square is firstly introduced by Leonhard Euler. A Latin square is in *reduced form* if first row is [1, 2, 3, ..., n] and first column is $[1, 2, 3, ..., n]^{T}$. If numbers in both diagonals also distinct then we called it by Latin square-X. An example of Latin square and reduced Latin square is given below

2	3	1]	[1	2	3]	
3	1	2	2	3	1	
1	2	3	3	1	2	

The study of Latin square is mainly about discrete mathematics aspect especially enumeration of Latin square. Until now, the exact number of Latin square is known only for $1 \le n \le 11$. The result of enumeration Latin square-X is can be found in [1]. The number of Latin square of order 5 and 6 is 960 and 92160 respectively, and for order 7 the number of Latin square is increasing sharply, that is 862848000.

Accordance with its name, Max-Plus Algebra is algebra that using two operations, max and plus. In Max-Plus algebra defined algebraic structure $(R_{\varepsilon}, \oplus, \otimes)$ where R_{ε} is set of extended real numbers, i.e. $R_{\varepsilon} = R \cup \{-\infty\}$. In this paper, we denoted infinite element, i.e. $\varepsilon = -\infty$ Operation max denoted by \oplus and defined by $a \oplus b = \max\{a, b\}$, and operation plus denoted by \otimes and denoted by $a \otimes b = a + b$ for every a, bin R_{ε} . For example, $3 \oplus 2 = \max\{3,2\} = 3$ and $-2 \otimes 6 = -2 + 6 = 4$.

It is easy to show that both operations \oplus , \otimes are commutative in max-plus algebra. Because all $x \in R_{\varepsilon}$ satisfy $x \oplus \varepsilon = \varepsilon \oplus x = x$ and $x \otimes 0 = 0 \otimes x = x$, then the zero and unit element in max-plus algebra is ε and 0, respectively.

The set of all $n \times m$ matrices in max-plus algebra is denoted by $R_{\varepsilon}^{n \times m}$, and for m = 1 we denoted the set of all $n \times 1$ vectors by R_{ε}^{n} . Let $A \in R_{\varepsilon}^{n \times m}$, the entry of A in i^{th} row and j^{th} column is denoted by $a_{i,j}$ and sometimes we write $[A]_{i,j}$. The i^{th} row and j^{th} column of A is denoted by $[A]_{i,-}$ and $[A]_{-,j}$ respectively. For $A, B \in R_{\varepsilon}^{n \times m} A \oplus B$ is defined by

$$[A \oplus B]_{i,j} = a_{i,j} \oplus b_{i,j} = \max\{a_{i,j}, b_{i,j}\}$$

and for $A \in R_{\varepsilon}^{n \times p}$, $B \in R_{\varepsilon}^{m \times p}$, $A \otimes B$ is defined by $[A \otimes B]_{i,j} = \max\{(a_{i,1} + b_{1,j}), (a_{i,2} + b_{2,j}), ..., (a_{1,p} + b_{p,j})\}$

For example,

$$A = \begin{bmatrix} 1 & 1 & 2 \\ \varepsilon & -1 & 4 \\ 0 & 2 & 3 \end{bmatrix}, B = \begin{bmatrix} 3 & -1 & \varepsilon \\ 0 & -5 & 1 \\ -1 & \varepsilon & 2 \end{bmatrix}$$

We get

$$A \oplus B = \begin{bmatrix} 3 & 1 & 2 \\ 0 & -1 & 4 \\ 0 & 2 & 3 \end{bmatrix}, A \otimes B = \begin{bmatrix} 4 & 0 & 4 \\ 3 & -6 & 6 \\ 3 & -1 & 5 \end{bmatrix}$$

In max-plus algebra, we defined $A^{\otimes 2} = A \otimes A$ or generally $A^{\otimes k+1} = A \otimes A^{\otimes k}$ for k = 1, 2, ...

Let $A \in R_{\varepsilon}^{n \times n}$, a digraph (directed graph) of A is denoted as G(A). Graph G(A) has n vertices and there is an edge from vertex i to vertex j if $a_{j,i} \neq \varepsilon$ and this edge is denoted by (i, j). Weight of edge (i, j) is denoted by w(i, j) and equal to $a_{j,i}$. Sequence of edges $(j_1, j_2), (j_2, j_3), \dots, (j_{k-1}, j_k)$ is called by a *path* and if all vertices $j_1, j_2, j_3, \dots, j_{k-1}$ are different then called by *elementary path*. Circuit is an *elementary close path*, i.e. $(j_1, j_2), (j_2, j_3), \dots, (j_{k-1}, j_1)$. Circuit that consisting of single edge, from a vertex to itself, is called by *looping*.

Manuscript received April 7, 2013.

Muhammad Syifa'ul Mufid, Graduate Student Department of Mathematics, Institut Teknologi Sepuluh Nopember Surabaya (e-mail: syifaul.mufid11@mhs.matematika.its.ac.id)

Subiono, Department of Mathematics, Institut Teknologi Sepuluh Nopember Surabaya (e-mail: subiono2008@matematika.its.ac.id)

Weight of a path $p = (j_1, j_2), (j_2, j_3), ..., (j_{k-1}, j_k)$ is denoted by $|p|_w$ and equal to the sum of weight each edge. Length of path p is denoted by $|p|_l$ and equal to the number of edges in p. Average weight of p is defined by $\frac{|p|_w}{|p|_l}$.

Any circuit with maximum average weight is called by *critical circuit*. Graph G(A) is called strongly connected if there is path for any vertex *i* to any vertex *j* in G(A). If graph G(A) is strongly connected, then matrix *A* is *irreducible*. From matrix *A*, $[A^{\otimes k}]_{i,j}$ is equal to the maximal weight of a path with length *k* from vertex *i* to vertex *j*.

II. LATIN SQUARE IN MAX-PLUS ALGEBRA

Because the discussion is in max-plus algebra, it is allowed to use infinite element $\varepsilon = -\infty$ as number/element of Latin square. In this paper we define two types of Latin square:

- a. Latin square without infinite element, the numbers that used are in $\underline{n} = \{1, 2, ..., n\}$
- b. Latin square with infinite element, the numbers that used are in $\underline{n}_{\varepsilon} = \{-\infty, 1, 2, ..., n-1\}$

The set of all Latin squares of order *n* without infinite element is denoted by LS^n and the set of all Latin squares of order *n* with infinite element is denoted by LS_{ε}^n . Example of two types

of Latin square is given below.

We can infer that $L_1 \in LS^4$ and $L_2 \in LS^{4}_{\varepsilon}$.

$$L_{1} = \begin{bmatrix} 2 & 3 & 1 & 4 \\ 3 & 1 & 4 & 2 \\ 4 & 2 & 3 & 1 \\ 1 & 4 & 2 & 3 \end{bmatrix}, L_{2} = \begin{bmatrix} \varepsilon & 1 & 3 & 2 \\ 3 & 2 & \varepsilon & 1 \\ 2 & \varepsilon & 1 & 3 \\ 1 & 3 & 2 & \varepsilon \end{bmatrix}$$

III. PROPERTIES OF LATIN SQUARE IN MAX-PLUS ALGEBRA

Properties of Latin square in max-plus algebra that will be derived are:

- a. Irreducible. Are all Latin squares in max-plus algebra irreducible?
- b. Close under operation \oplus . Are all Latin squares closed under operation \oplus ?
- c. Close under operation \otimes . Are all Latin squares closed under operation \otimes ?

A. Property of Irreducibility

Lemma 1. All Latin squares are irreducible matrix.

Proof.

Let *L* be Latin square. If $L \in LS^n$ then all numbers of *L* are finite. Therefore, in graph G(L) there is a path with length 1 from vertex *i* to vertex *j* for all $i, j \in \underline{n}$. Then we can conclude that G(L) is strongly connected and consequently *L* is irreducible.

If $L \in LS_{\varepsilon}^{n}$ we consider matrix $L^{\otimes 2} = L \otimes L$. Because there is only one ε in every row and every column of L then $[L^{\otimes 2}]_{i,j}$ is finite for all $i, j \in \underline{n}$. Therefore in graph G(L) there are some paths with length at least 2 from vertex i to vertex jfor all $i, j \in \underline{n}$. Then we can conclude that G(L) is strongly connected and consequently L is irreducible.

B. Property of closed under operation \oplus

We say that Latin squares are closed under operation \oplus if for all Latin squares A and B, $A \oplus B$ is Latin square.

Lemma 2. Let both A and B are in LS^n or in LS^n_{ε} . $A \oplus B$ is Latin square if and only if A = B.

Proof.

Let $A, B \in LS^n$ and $C = A \oplus B$. Because $[A]_{i,j}, [B]_{i,j} \in \underline{n}$ then $[C]_{i,j} = [A]_{i,j} \oplus [B]_{i,j} \in \underline{n}$. If *C* is Latin square then $C \in LS^n$. To prove A = B we only need considering first column. See the illustration below

$$\begin{bmatrix} c_{1,1} \\ c_{2,1} \\ \vdots \\ c_{n,1} \end{bmatrix} = \begin{bmatrix} a_{1,1} \oplus b_{1,1} \\ a_{2,1} \oplus b_{2,1} \\ \vdots \\ a_{n,1} \oplus b_{n,1} \end{bmatrix}$$

Let $a_{1,1} = x \in \underline{n}$, if $b_{1,1} \neq x$ then x can appear more than one or not appear in left side matrix. Therefore we get $a_{1,1} = b_{1,1}$ and by same way we get $a_{2,1} = b_{2,1},..., a_{n1} = b_{n,1}$ or generally $a_{i,1} = b_{i,1}$ for all $i \in \underline{n}$. Consequently, the first column of A and B is equal or generally $[A]_{-,i} = [B]_{-,i}$ for all $i \in \underline{n}$, in other word A = B.

Conversely, if A = B then

$$c_{i,j} = a_{i,j} \oplus b_{i,j} = a_{i,j} \oplus a_{i,j} = \max\{a_{i,j}, a_{i,j}\} = a_{i,j}$$

Consequently, $C = A \oplus B = A \oplus A = A$ and *C* is Latin square. For $A, B \in LS_{c}^{n}$ it can be proved by similar way.

By Lemma 2 we can conclude that Latin square is not closed under operation \otimes

Example:

The Third Basic Science International Conference - 2013

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 3 & 2 \\ 3 & 2 & 1 \end{bmatrix}$$

We get

$$A \oplus B = \begin{bmatrix} 2 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 2 & 2 \end{bmatrix}$$

and $A \oplus B$ is not Latin square.

C. Property of closed under operation \otimes

We say that Latin squares are closed under operation \otimes if for all Latin square A and B, $A \otimes B$ is Latin square. In other word, there is Latin square C and natural number p such that $A \otimes B = p \otimes C$.

Lemma 3. If three Latin squares $A, B, C \in LS^n$ satisfy $A \otimes B = p \otimes C$ then p = n.

Proof. Let $A \otimes B = D$, and D is Latin square, then

$$[D]_{i,j} = \max\{(a_{i,1} + b_{1,j}), (a_{i,2} + b_{2,j}), \dots, (a_{1,n} + b_{n,j})\}$$

Because maximum value both $a_{i,k}$ and $a_{k,j}$ for all $k \in \underline{n}$ are n, then maximum value of $[D]_{i,j}$ is 2n. Next, we determine the minimum value of $[D]_{i,j}$.

Let $a_{i,k} + b_{k,j} = d_k$ then $[D]_{i,j} = \max\{d_1, d_2, ..., d_n\}$ and we know that $\sum_{k=1}^n d_k = n(n+1)$. It is easy to find that the

minimum value of $[D]_{i,j}$ occur when

$$d_1 = d_2 = \dots = d_n = n+1$$
,

then $[D]_{i,j} = \max\{n + 1, n + 1, ..., n + 1\} = n + 1$. If there are some k such that $d_k < n + 1$ then there are some l such that $d_i > n + 1$ and consequently $[D]_{i,j} > n + 1$. So, it is clear that minimum value of $[D]_{i,j}$ is n + 1.

Because *D* is Latin square of order *n* and $n + 1 \le [D]_{i,j} \le 2n$, then we can conclude that

$$[D]_{i,j} \in \{n+1, n+2, ..., 2n-1, 2n\} = \{n+k \mid \forall k \in \underline{n}\}$$

So, if $D = p \otimes C$, we get $p = n$.

From Lemma 3, one of requirement for $A \otimes B$ producing Latin square is for all $i \in \underline{n}$ there is $j \in \underline{n}$ such that

 $[A]_{i,-} + [B]_{-,j} = [n+1 \quad n+1 \quad \dots \quad n+1 \quad n+1]$ So we can conclude that Latin square is not closed under operation \otimes .

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix}, B = \begin{bmatrix} 2 & 3 & 1 \\ 3 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$

We get

$$A \otimes B = \begin{bmatrix} 5 & 5 & 6 \\ 5 & 6 & 5 \\ 6 & 5 & 5 \end{bmatrix}$$

and $A \otimes B$ is not Latin square.

IV. EIGENPROBLEM OF LATIN SQUARE IN MAX-PLUS ALGEBRA

Matrix *L* of order *n* has eigenvalue $\lambda \in R$ and corresponding eigenvector $v \in R_c^{n \times n}$ if both of them satisfy

$$L \otimes v = \lambda \otimes v$$

In this paper we denoted $\lambda(A)$ be eigenvalue of matrix A. From [2,3], there is algorithm to find eigenvalue corresponding eigenvector that called by *Power Algorithm*. If L is irreducible matrix, then eigenproblem is equivalent to problem to find critical circuit in G(L), where eigenvalue is equal to weight of that critical circuit.

We define $L_{\lambda} = (-\lambda) \otimes L$ and

$$L_{\lambda}^{+} = L \oplus L^{\otimes 2} \oplus L^{\otimes 3} \oplus ... \oplus L^{\otimes n}$$

It can be proved that $[L_{\lambda}^{+}]_{-,j}$ is eigenvector of L if $[L_{\lambda}^{+}]_{i,j} = 0$ [3].

A. Eigenvalue of Latin square in Max-Plus Algebra

From Lemma 1, all Latin squares are irreducible matrix. Therefore, to find eigenvalue of L we need to find the weight of critical circuit in G(L).

If $L \in LS^n$ then $[L]_{j,j} \in \{1, 2, ..., n\}$ and it is clear that $\max\{[L]_{i,j}\} = n$. Let

$$p = (j_1, j_2), (j_2, j_3), ..., (j_{k-1}, j_k), (j_k, j_1)$$

be critical circuit with length k with $k \le n$ in G(L), then

 $|p|_{w} = w(j_{1}, j_{2}) + w(j_{2}, j_{3}) + \dots + w(j_{k-1}, j_{k}) \le kn$ and average weight of p is equal to

$$\frac{\mid p \mid_{w}}{\mid p \mid_{l}} \le \frac{kn}{k} = n$$

Because *n* occurs exactly one in every row and column of *L*, we can ensure that average weight of critical circuit *p* is equal to *n*. Therefore, eigenvalue of *L* is equal to *n*, in other word $\lambda = n$.

By the same method, we get eigenvalue of $L \in LS_{\varepsilon}^{n}$, that is $\lambda = n - 1$.

B. Eigenvector of Latin square in Max-Plus Algebra

Let $A \in LS^n$ and $B \in LS_{\varepsilon}^n$. From the definition we get $A_{\lambda} = (-n) \otimes A$ and $B_{\lambda} = (-n+1) \otimes A$. It is clear that

average weight of critical circuit both in G(A) and and G(B) is 0.

From [3], if *p* is critical circuit of *G*(*L*) then for all vertices η in *p* satisfy $[L_{\lambda}^{+}]_{\eta,\eta} = 0$. But in this case, for $A \in LS^{n}$ and $B \in LS_{\varepsilon}^{n}$, the average weight of *A* and *B* is equal to maximum value of matrix *A* and *B*, i.e

$$\lambda(A) = \max\{[A]_{i,i}\} = n$$

and

$$\lambda(B) = \max\{[B]_{i,i}\} = n - 1$$

Moreover, *n* occurs exactly one in every row and column of *A* and *n*-1 occurs exactly one in every row and column of *B*. Consequently, there is always critical circuit in *A* such that the initial vertex is *i*. The same condition is for matrix *B*. Therefore, for all $\eta \in \underline{n}$ in satisfy

$$[A]_{n,n} = 0$$
 and $[B]_{n,n} = 0$

or in other word, all diagonal entries of both A and B are equal to 0. So we can conclude that all columns of A_{λ}^{+} is eigenvector of A and all columns of B_{λ}^{+} is eigenvector of B

Example.

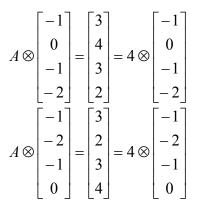
$$A = \begin{bmatrix} 1 & 3 & 4 & 2 \\ 2 & 4 & 3 & 1 \\ 4 & 2 & 1 & 3 \\ 3 & 1 & 2 & 4 \end{bmatrix}$$

We get $\lambda(A) = 4$ and

$$A_{\lambda} = \begin{bmatrix} -3 & -1 & 0 & -2 \\ -2 & 0 & -1 & -3 \\ 0 & -2 & -3 & -1 \\ -1 & 3 & -2 & 0 \end{bmatrix}$$
$$A_{\lambda}^{+} = \begin{bmatrix} 0 & -1 & 0 & -1 \\ -1 & 0 & -1 & -2 \\ 0 & -1 & 0 & -1 \\ -1 & -2 & -1 & 0 \end{bmatrix}$$

from A_{λ}^{+} we get three different columns and we can check that all of them are eigenvector of A

$$A \otimes \begin{bmatrix} 0 \\ -1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \\ 4 \\ 3 \end{bmatrix} = 4 \otimes \begin{bmatrix} 0 \\ -1 \\ 0 \\ -1 \end{bmatrix},$$



V. CONCLUSION

In this paper we can conclude that Latin squares have properties in Max-Plus Algebra, that is

- 1. All Latin squares are irreducible matrix
- 2. Latin squares are not closed under operation \oplus
- 3. Latin squares are not closed under operation \otimes

Moreover, eigenvalue of Latin squares L are equal to maximum value of L and all columns of L^+_{λ} are eigenvector of L.

REFERENCES

- Mufid, M.S., 2012, Kajian Teori Permutasi and Its Application to Enumeration of Latin Square-X and Sudoku-X (In Indonesian), *Bachelor Thesis*, Mathematics and Natural Science Faculty, Institut Teknologi Sepuluh Nopember, Surabaya.
- [2] Subiono and van der Woude, J.W., Power Algorithm for (max, +)- and Bipartite (Min, Max,+)-system, *Discrete Event Dynamic Systems: Theory and Application* 10, pp. 369-389, 2000.
- [3] Subiono, 2012, Aljabar Max-Plus dan Terapannya, Buku Ajar Mata Kuliah Pilihan Pasca Sarjana Matematika, Institut Teknologi Sepuluh Nopember, Surabaya.