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Abstract— Matrices L of size n × n are called Latin square if 

every column and every row of L contain n different numbers. 
And, Max-Plus Algebra is algebraic system using two operations, 
max and plus. In this paper, we derive some properties of a Latin 
square in Max-Plus Algebra and their eigenvalues and 
corresponding eigenvector.

Index Terms— Latin square, Max-Plus Algebra, Eigenvalue, 
Eigenvector.

I. INTRODUCTION

A Latin square of order n is square matrix of size n × n such 
that every row and every column has n distinct numbers. For 
convenience, we use n = {1,2,…,n}. The notion of Latin 
square is firstly introduced by Leonhard Euler. A Latin square 
is in reduced form if first row is [1, 2, 3, …, n] and first 
column is [1, 2, 3, …, n]T. If numbers in both diagonals also 
distinct then we called it by Latin square-X. An example of 
Latin square and reduced Latin square is given below
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The study of Latin square is mainly about discrete 
mathematics aspect especially enumeration of Latin square. 
Until now, the exact number of Latin square is known only for
1 ≤ n ≤ 11. The result of enumeration Latin square-X is can be 
found in [1]. The number of Latin square of order 5 and 6 is 
960 and 92160 respectively, and for order 7 the number of 
Latin square is increasing sharply, that is 862848000.

Accordance with its name, Max-Plus Algebra is algebra that 
using two operations, max and plus.  In Max-Plus algebra 
defined algebraic structure ),,( R where is set of 

extended real numbers, i.e. }{ RR . In this paper, we 

denoted infinite element, i.e.  Operation max denoted 
by  and defined by },max{ baba  , and operation plus 
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denoted by  and denoted by baba  for every a, b
in R . For example, 3}2,3max{23  and

46262  .
It is easy to show that both operations  , are 

commutative in max-plus algebra. Because all Rx  satisfy 

xxx   and xxx  00 , then the zero and 
unit element in max-plus algebra is  and 0 , respectively.

The set of all mn  matrices in max-plus algebra is denoted 
by mnR 

 , and for 1m we denoted the set of all  1n vectors 

by nR . Let mnRA   , the entry of A in ith row and jth column 

is denoted by 
jia ,
and sometimes we write

jiA ,][ . The ith row 

and jth column of A is denoted by 
,][ iA and 

jA ,][ 

respectively. For mnRBA  , BA  is defined by

},max{][ ,,,,, jijijijiji babaBA 

and for pmpn RBRA    , , BA  is defined by

)}(),...,(),max{(][ ,,1,22,,11,, jppjijiji bababaBA 

For example,
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In max-plus algebra, we defined AAA 2 or 
generally kk AAA  1 for ,...2,1k

Let nn
ε

RA  , a digraph (directed graph) of A is denoted 

as G(A). Graph G(A) has n vertices and there is an edge from 
vertex i to vertex j if ija ,

and this edge is denoted by (i, j). 

Weight of edge (i, j) is denoted by ),( jiw and equal to
ija ,
. 

Sequence of edges ),(),...,,(),,( 13221 kk jjjjjj 
is called by 

a path and if all vertices
1321 ,...,,, kjjjj are different then 

called by elementary path. Circuit is an elementary close path, 
i.e. ).,(),...,,(),,( 113221 jjjjjj k 

Circuit that consisting of 

single edge, from a vertex to itself, is called by looping.
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Weight of a path ),(),...,,(),,( 13221 kk jjjjjjp  is 

denoted by 
wp || and equal to the sum of weight each edge. 

Length of path p is denoted by 
lp || and equal to the number 

of edges in p. Average weight of p is defined by 
l

w

p

p

||

|| .

Any circuit with maximum average weight is called by 
critical circuit. Graph G(A) is called strongly connected if 
there is path for any vertex i to any vertex j in G(A). If graph 
G(A) is strongly connected, then matrix A is irreducible. From 
matrix A, 

ji
kA ,][  is equal to the maximal weight of a path 

with length k from vertex i to vertex j. 

II. LATIN SQUARE IN MAX-PLUS ALGEBRA

Because the discussion is in max-plus algebra, it is allowed 
to use infinite element  as number/element of Latin 
square. In this paper we define two types of Latin square:

a. Latin square without infinite element, the numbers that 
used are in }...,2,1{ nn 

b. Latin square with infinite element, the numbers that 
used are in }1...,2,1,{  nn 

The set of all Latin squares of order n without infinite element 
is denoted by nLS and the set of all Latin squares of order n 
with infinite element is denoted by nLS  . Example of two types 

of Latin square is given below.
We can infer that 4

1 LSL  and 4
2 LSL  .

III. PROPERTIES OF LATIN SQUARE IN MAX-PLUS
ALGEBRA

Properties of Latin square in max-plus algebra that will be
derived are:

a. Irreducible. Are all Latin squares in max-plus algebra 
irreducible?

b. Close under operation . Are all Latin squares closed 
under operation ?

c. Close under operation . Are all Latin squares closed 
under operation ?

A. Property of Irreducibility 

Lemma 1. All Latin squares are irreducible matrix.

Proof. 
Let L be Latin square. If nLSL  then all numbers of L are 

finite. Therefore, in graph G(L) there is a path with length 1 
from vertex i to vertex j for all nji , . Then we can conclude 

that G(L) is strongly connected and consequently L is 
irreducible. 

If nLSL  we consider matrix LLL 2 . Because there 

is only one  in every row and every column of L then 

jiL ,
2 ][  is finite for all nji , . Therefore in graph G(L) there 

are some paths with length at least 2 from vertex i to vertex j
for all nji , . Then we can conclude that G(L) is strongly 

connected and consequently L is irreducible. 


B. Property of closed under operation 

We say that Latin squares are closed under operation  if 
for all Latin squares A and B, BA  is Latin square.

Lemma 2. Let both A and B are in nLS or in nLS  . BA  is 

Latin square if and only if BA  .

Proof.
Let nLSBA , and BAC  . Because nBA jiji ,, ][,][

then nBAC jijiji  ,,, ][][][ . If C is Latin square then 
nLSC  . To prove A = B we only need considering first 

column. See the illustration below
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Let nxa 1,1
, if xb 1,1

then x can appear more than one 

or not appear in left side matrix. Therefore we get 

1,11,1 ba  and by same way we get 
1,11,21,2 ,..., nn baba  or 

generally
1,1, ii ba  for all ni . Consequently, the first column 

of A and B is equal or generally 
ii BA ,, ][][   for all ni , 

in other word BA  .

Conversely, if BA  then 

jijijijijijijiji aaaaabac ,,,,,,,, },max{ 

Consequently, AAABAC  and C is Latin square. 
For nLSBA , it can be proved by similar way.


By Lemma 2 we can conclude that Latin square is not closed 
under operation 

Example:
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and BA  is not Latin square.

C. Property of closed under operation 

We say that Latin squares are closed under operation  if 
for all Latin square A and B, BA  is Latin square. In other 
word, there is Latin square C and natural number p such 
that CpBA  .

Lemma 3.  If three Latin squares nLSCBA ,, satisfy 

CpBA  then np  .

Proof. Let DBA  , and D is Latin square, then
)}(),...,(),max{(][ ,,1,22,,11,, jnnjijiji bababaD 

Because maximum value both kia , and jka , for all 

nk  are n , then maximum value of 
jiD ,][ is n2 . Next, we 

determine the minimum value of
jiD ,][ .

Let 
kjkki dba  ,,

then },...,,max{][ 21, nji dddD  and 

we know that



n

k
k nnd

1

)1( . It is easy to find that the 

minimum value of 
jiD ,][ occur when 

1...21  nddd n
,

then 1}1,...,1,1max{][ ,  nnnnD ji
. If there are 

some k such that 1 nd k
then there are some l such 

that 1 nd l
and consequently 1][ ,  nD ji

. So, it is clear 

that minimum value of 
jiD ,][ is 1n .

Because D is Latin square of order n
and nDn ji 2][1 ,  , then we can conclude that 

}|{}2,12,...,2,1{][ , nkknnnnnD ji 

So, if CpD  , we get np  .


From Lemma 3, one of requirement for BA  producing 

Latin square is for all ni there is nj such that 

]11..11[][][ ,,   nnnnBA ji

So we can conclude that Latin square is not closed under 
operation .

Example:
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and BA  is not Latin square.

IV. EIGENPROBLEM OF LATIN SQUARE IN MAX-PLUS 

ALGEBRA

Matrix L of order n has eigenvalue R and 
corresponding eigenvector nnRv   if both of them satisfy

vvL  

In this paper we denoted )( A be eigenvalue of matrix A. 

From [2,3], there is algorithm to find eigenvalue 
corresponding eigenvector that called by Power Algorithm. If 
L is irreducible matrix, then eigenproblem is equivalent to 
problem to find critical circuit in G(L), where eigenvalue is 
equal to weight of that critical circuit.

We define LL  )(  and 
nLLLLL   ...32



It can be proved that
jL ,][ 




is eigenvector of L if 

0][ , 
jjL

[3].

A. Eigenvalue of Latin square in Max-Plus Algebra

From Lemma 1, all Latin squares are irreducible matrix. 
Therefore, to find eigenvalue of L we need to find the weight 
of critical circuit in G(L).

If nLSL  then },...,2,1{][ , nL jj  and it is clear that 

nL ji }]max{[ ,
. Let 

),(),,(),...,,(),,( 113221 jjjjjjjjp kkk 
be critical circuit with length k with nk  in G(L), then 

knjjwjjwjjwp kkw   ),(...),(),(|| 13221

and average weight of p is equal to

n
k

kn
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Because n occurs exactly one in every row and column of L, 
we can ensure that average weight of critical circuit p is equal 

to n. Therefore, eigenvalue of L is equal to n, in other word 
n .

By the same method, we get eigenvalue of nLSL  , that is 

1 n .

B. Eigenvector of Latin square in Max-Plus Algebra

Let nLSA and nLSB  . From the definition we get 

AnA  )( and AnB  )1( . It is clear that 
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average weight of critical circuit both in G(A) and and G(B) is 
0. 

From [3], if p is critical circuit of G(L) then for all vertices 
 in p satisfy 0][ , 

L . But in this case, 

for nLSA and nLSB  , the average weight of A and B is 

equal to maximum value of matrix A and B, i.e 

nAA ji  }]max{[)( ,
and 

1}]max{[)( ,  nBB ji .

Moreover, n occurs exactly one in every row and column of 
A and 1n occurs exactly one in every row and column 

of B . Consequently, there is always critical circuit in A such 
that the initial vertex is i. The same condition is for matrix B . 
Therefore, for all n in satisfy

0][ , A and 0][ , B

or in other word, all diagonal entries of both A and B are equal 
to 0. So we can conclude that all columns of 

A is 

eigenvector of A and all columns of 
B is eigenvector of B

Example.
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all of them are eigenvector of A
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V. CONCLUSION

In this paper we can conclude that Latin squares have 
properties in Max-Plus Algebra, that is

1. All Latin squares are irreducible matrix
2. Latin squares are not closed under operation 
3. Latin squares are not closed under operation 

Moreover, eigenvalue of Latin squares L are equal to 

maximum value of L and all columns of 
L are eigenvector of 

L. 
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