

5 - 7 June 2015

PROCEEDING Ditenas

Environmental Engineering & Water Technology Integrated Water Systems & Governance Water Science & Engineering

= PU

FACULTY OF ENGINEERING

Water Resources Engineering Department Faculty of Engineering, University of Brawijaya Jalan MT. Haryono no. 167 Malang 65145 - East Java - Indonesia Phone/ Fax. (0341) 562454 email: tsa_ub@ub.ac.id; wateresdev@ub.ac.id

icurdep

Conference Website:

www.wateresdev.ub.ac.id

cover picture in this book is copyrighted by the photographer who attend the Lomba Fotografi Pekan DAS Brantas IX-2010

ISSN: 2460-0849

THE 1ST YOUNG SCIENTIST INTERNATIONAL CONFERENCE OF WATER RESOURCES DEVELOPMENT

FOREWORD

The 1st Young Scientist International Conference of Water Resources Development and Environmental Protection 2015 (ICWRDEP 2015) Water Resources Engineering Department, Faculty of Engineering, University of Brawijaya was conducted on 5 - 7 June 2015. The Conference was organized by Faculty of Engineering and collaborated with International University of Malaya (UM), Universiti Sains Malaysia (USM) and Universiti Tun Hussein Onn Malaysia (UTHM).

The participants of the Conference are about 60 participants come from more than 20 higher institutions, such as; Sepuluh Nopember Institute Of Technology, Surabaya (ITS), Bandung Institute of Technology (ITB), Bogor Agricultural University (IPB), The University of Lampung, Sriwijaya University, University of Muhammadiyah Malang (UMM), University of Brawijaya (UB), Padjajaran University, State University of Malang (UM), National Institute of Technology (ITENAS), Tidar university, State Polytechnic of Malang (Politeknik Negeri Malang), Mulawarman University, State Polytechnic of Padang (Politeknik Negeri Padang), Malang National Technology Institute (Institut Teknologi Nasional Malang), BBWS Mesuji Sekampung, Bengkulu University, Diponegoro University (UNDIP), Nusa Cendana University, Khairun University, Bantara University, University of Jember, State Polytechnic of Samarinda (Politeknik Negeri Samarinda), UM (University of Malaya), Universiti Sains Malaysia (USM) and Universiti Tun Hussein Onn Malaysia (UTHM), and others, which reflect the importance water resources engineering development and environmental protection.

The topics of conference are Environmental Engineering & Water Technology, Integrated Water System & Governance and Water Science & Engineering. The conference provide platform for researchers, engineers and academician to meet and share ideas, achievement as well as experiences through the presentation of papers and discussion. These events are important to promote and encourage the application of new concept of water resources development and techniques to practitioners as well as enhancing the knowledge of environmental protection with the current requirements of analysis, design and construction of any engineering concept.

As Head of Water Resources Engineering Department, we would like to express our deepest gratitude to the Rector University of Brawijaya, Keynote Speakers (Prof Satoru Oishi & Prof Tsuyoshi Imai from Japan, Assoc. Prof Faridah Othman and Prof Amir Hamzah from Malaysia), International Advisory Board members, organizing committee and also to all participants.

We would like to express our deepest gratitude to the Faculty of Engineering conducted such conference. This is the first International conference for the Department and we expect that this is will become 2nd annual activity for our Department.

Malang, 5 June 2015

Head of Water Resources Engineering Department Faculty of Engineering University of Brawijaya Ditenas

Editorial Boards

Dr. Ery Suhartanto, ST.,MT. (University of Brawijaya)
Dr.Ir. Pitojo Tri Juwono, MT. (University of Brawijaya)
Anggara WWS, ST.,M.Tech. (University of Brawijaya)
Dr.Ir. Ussy Andawayanti, MS. (University of Brawijaya)
Fahmi Hidayat, ST.,MT. (Perum Jasa Tirta 1)
Gatot Eko Susilo, ST.,M.Eng.Env.,Ph.D (The University of Lampung)

Editorial Reviewers

Prof. Dr. Ir. Mohammad Bisri, MS. (University of Brawijaya) Prof. Ir. Dr. Amir Hashim bin Mohd Kassim (UniversitiTun Hussein Onn Malaysia) Prof. Tsuyoshi Imai (Yamaguchi University, Japan) Prof. Dr. Ir. Suhardjono, M.Pd.Dipl.HE (University of Brawijaya) Prof. Satoru Oishi (Kobe University, Japan) Prof. Dr. Nor Azazi Zakaria (Universiti Sains Malaysia) Dr.Ir. Rispiningtati, M.Eng. (University of Brawijaya) Ir. Moh. Sholichin, MT., Ph.D (University of Brawijaya) Prof. Dr. Ir. Nadjaji Anwar, M.Sc (Sepuluh November Institute of Technology) Ir. Dantje Kardana N, M.Sc., Ph.D (Bandung Institute of Technology) Dr.Eng. Tri Budi Prayogo, ST., MT. (University of Brawijaya) Dian Sisinggih, ST., MT., Ph.D (University of Brawijaya) Ir. Abubakar Alwi, Ph.D (University of Tanjung Pura) Dr. Eng. Andre Primantyo Hendrawan, ST., MT. (University of Brawijaya) Assoc. Prof. Dr. Faridahbinti Othman (Universiti Malaya) Dr. Ir. Widandi Soetopo, M.Eng. (University of Brawijaya) Dr. Eng. Donny Harisuseno, ST., MT. (University of Brawijaya)

Table of Content

Page

Forewordi
Editorial Boardsiii
Editorial Reviewersiii
THEME 1 Environmental Engineering & Water Technology
Circulation Effect Of Coffee Wastewater Flow In Water Hyacinth
Phytoremediation A-1
Elida Novita, Sri Wahyuningsih, Siswoyo Soekarno, Betty Siska Rukmawati
Potential Greywater Quantification For Reuse In Newton Residence Apartment
Bandung, Indonesia
Dyah Asri Handayani Taroepratjeka, Yulianti Pratama, Devi Ayu Putrianti
· · elle
Analyzing Water Quality Changes Due To Agriculture Activities In Seputih
Irrigation Area, Lampung Province, Indonesia
Eka Desmawati, Rusdi Effendi, Yudha Mediawan, Gatot E. Susilo
Evaluation of Environmentally Friendly Flushing in Wlingi and Lodoyo
Reservoirs
Fahmi Hidayat
Dynamic of Dissolved Oxygen At Inlet Zone Of Fish Cage Area In Cirata Reservoir,
West Java, Indonesia
Fanny Novia, Priana Sudjono, Arief Sudrajat
Intensive Agriculture of Peat Land Areas To Reduce Carbon Emission And Fire Prevention (A Case Study In Tanjung Jabung Timur Tidal Lowland Reclamation
Jambi)

Momon Sodik Imanudin1, and R.H Susanto

Mikro-Nano Activated Charcoal from Ricestraw as Adsorben Heavy Metals Leachate	
Case Studies on "TPA JATIBARANG", Semarang Jawa Tengah	A-49
Rizki Januarita, Anis Ulfa W.A, Azka Azizah, Hilma Muthi'ah	

Determination of Water Quality Status at Karang Mumus River Samarinda,	
Indonesia	A-59
Sri lestari, Diana Arfiati, Aniek Masrevaniah, Moch. Sholichin	

Efficiency Analysis of Cod And Bod Decline Wastewater Coffee On Phytoremediation	
Process Using Water Hyacinth (Eichornia Crassipes (Mart.) Solms)A	-62
Setyorini, Sri Wahyuningsih, Elida Novita	

Green Roof: Vegetation Response towards Lead and Potassium	A-69
Khairul Rahmah Ayub, Aminuddin AB Ghani, Nor Azazi Zakaria	

Water Content – Density Criteria of Bentonite – Fly Ash Mixtures for Liners	Compacted Soil
Andre Primantyo Hendrawan, Dian Chandrasasi1, Runi Asmaranto, Anggara Wiyono Wit Irnawati Gunawan, Zaenal Abidin	Saputra, Linda
25	
rena	

Integrated Water Systems & Governance THEME 2

Experience in Rainwater Harvesting Application For Household Scale	In Bandar
Lampung, Indonesia	B-1
Gatot Eko Susilo	

Estimation of the Flood Using Data Modis to Support Integrated Water Resources	
Management	.B-9
Gusta Gunawan, Alex Surapati, Besperi	

Alternative Selection for Water Resource Potential in Brantas Watershed	
For The Development of Hydroelectric Power Plant	B-16
Deviany Kartika, Miftahul Arifin	

Analysis Availability on the Clean Water Infrastructure at PDAM Ternate	B-23
Nani Nagu	

Rainfall Estimation Using Weather Radar and the Flood Simulation at Ciliwung
River Indonesia AnalysisB-30
Ratih Indri Hapsari, Agus Suhardono, Reni Sulistyowati
Integrated Coastal Zone Management with Watershed Management Based On
Co-Management: A Case Study Porong River Along Sidoardjo-Pasuruan
Coastal AreaB-37
Rudianto
The Evaluation of Song Bajul Springs Potency For Resident's Clean Water Supply
In Desa Pucanglaban Kecamatan Pucanglaban Kabupaten Tulungagung In
2015-2030
Sam Yudi Susilo, Hendra Agus
Flow Analysis On Pipe Distribution Network Using Differential Evolution Algorithm (DE)B-54
Sulianto
Hydroinformatics In Volumetric And Real Time Irrigation Discharge
MonitoringB-63
Susi Hidayah, Aditya Prihantoko, and Irfan Sudono
Multiple Stacked Rule Curves For Reservoir Operation Of Medium Reservoir B-71
Widandi Soetopo, Lily Montarcih Limantara, Suhardjono, Ussy Andawayanti, Rahmah Dara Lufira
Water Balance Analysis Due To the Human Live RequirementsB-76
Agus Suharyanto, Very Dermawan, Mustika Anggraeni, Pudyono, Kurniawan Sigit Wicaksono,
Diah Susilowati
Optimization System Network Providing Water Study Blitar District Of Kademangan East Java Indonesia
Rahmah Dara Lufira, Suwanto Marsudi, Jadfan Sidqi F., Evi Nur Cahya
Safety Inspection of Prijetan DamB-89
Runi Asmaranto

Analysis of Conditions Changes In Sumi Dam Hydrology Parameters	
Design	B-100
Anggara WW. Saputra	

THEME 3 Water Science & Engineering

Investigation of Marine Debris In Kuta Beach, BaliC-1
Adli Attamimi, Noir P. Purba, Santi R.Anggraini, Syawaludin A. Harahap
Design of Marine Propulsion System Based On Structural Vibration
Asep Andi, Radite Praeko Agus Setiawan
Transmission and Wave Reflection on Double Submerged Breakwater
Bambang Surendro
Calibration of Measurement on Modelling Stepped SpillwayC-24
Denik Sri Krisnayanti, Soehardjono, Moch.Sholichin, Very Dermawan, Nina B.Rustiati
Estimates of Time of Concentration in Rainfall, Runoff and Infiltration
Application
Dian Noorvy, Lily Montarcih, Donny Harisuseno
Comparing the Calculation Method of the Manning Roughness Coefficient in Open
Channels
Hari Wibowo
Grouping Watersheds Through Hierarchical Clustering Approach
Judi K. Nasjono, Mohammad Bisri, Agus Suharyanto, Dian Sisinggih
Study on the Effectivity of Decreasing Permeability and Increasing Shear Strength of Sandy Beach Soil And River Soil By Using Exoplysaccharide Biopolymer
Emma Yuliani, Maytri Handayani, Ariska Desy Haryani

Heat Effect on Fluid Free Convection Flow Past A Porosity Sphere	C-70
Mohamad Tafrikan, Basuki Widodo, Chairul Imron	

Incompressible and Steady Mixed Convection Flow Past Over a Sphere
Mohammad Ghani, Basuki Widodo, Chairul Imron
Viscoelastic Fluid Past a Flat Plate with the Effect of Magneto hydrodynamic C-85
Putri Pradika Wanti, Basuki Widodo, Chairul Imron
Flow Measurement Under Sluice Gate Model
Rustiati, N.B., Suhardjono, Rispiningtati, Dermawan, V., Krisnayanti, D.S
Kinetic Modeling of Domestic Wastewater (Greywater Type) Using Uasb
Reactor
S. Syafrudin, P. Purwanto, S. Sudarno
An Imaging Technique for Identifying Flow Structure and Magnitude In
A Channel
Tommy E. Sutarto, Habir, S.S.N. Banjarsanti
The Numerical Solution Of Free Convection Flow of Visco-Elastic Fluid With Heat Generation Past Over A Sphere
Wayan Rumite, Basuki Widodo, Chairul Imron
Assessment of Sedimentation Patterns and the Threat of Flooding due to Reclamation in The Lamong Bay, Indonesia
Mohammad Sholichin, Tri Budi Prayogo, Sebrian Mirdeklis Beselly Putra, Rini Wahyu Sayekti
Design Improvements To The Physical Model Test Spillway Of Mujur Dam In Lombok Tengah Region
Dian Chandrasasi, Dwi Priyantoro, Anggara WW. Saputra
Hydropower Plant using Pump storage at Cisokan Dam

Model Test of Physical Spillway In Lesti Dam, Malang District East Java	C-155
Heri Suprijanto, Janu Ismoyo, Sumiadi, Yuli Astuti	

A Network Rain Station in Reviewed of the Topography on Watershed	Widas District
Nganjuk – East Java of Indonesia	C-163

Eri Prawati, Suhardjono, Lily Montarcih, Rispiningtati

Application of Design Charts for Determination of Landfill Liner's Thickness C-170

Andre Primantyo Hendrawan, Anggara Wiyono Wit Saputra, Runi Asmaranto, Dian Chandrasasi, Hestina Eviyanti, Zaenal Abidin

Environmental Engineering & Water Technology

Viscoelastic Fluid Past A Flat Plate With The Effect Of Magnetohydrodynamic

Putri Pradika WANTI¹*, Basuki WIDODO¹, Chairul IMRON¹

¹Department of Mathematics, Faculty of Mathematics and Natural Sciences, SepuluhNopember Institute of Technology, Surabaya *Corresponding author's e-mail : b_widodo@matematika.its.ac.id, imron-its@matematika.its.ac.id, and putri.pradika.w@gmail.com

ABSTRACT

One type of non-Newtonian fluids is viscoelastic fluid. The characteristics of this fluid are viscous and elastic. Many researches have been done on non-Newtonian fluid, one of which the magneto hydrodynamics viscoelastic fluid, especially for the application in engineering field. This study will research about the problem of magneto hydrodynamics viscoelastic fluid passing through the flat plate. The governing equation of the flow is solved using the boundary layer theory. The boundary layer equations are then transformed into a non-dimensional form using the stream function equation. The numerical results are analyzed the effect of viscoelastic

parameter (K), magnetic parameter (M), and Prandtl number (Pr) to the velocity profile(f')

and temperature profile (θ) . Based on numerical simulations that have been conducted, it can be

concluded that the values of velocity (f') decrease when the magnetic parameter, viscoelastic

parameter, and Prandtl number increase. The values of temperature profile increase (θ) when the viscoelastic parameter and magnetic parameter increase, but it will be decrease when Prandlt number increase.

KEYWORDS

Magnetohydrodynamic, Visco-elastic, Prandtl number

INTRODUCTION

The reseach about Non-Newtonian fluids has grown considerably because of more application in industrial fields such as in petroleum production, wire drawing, paper production etc. The Walters-B viscoelastic fluid model was first developed by Walters [1] that investigated the foundation of linier viscousity. The result have shown that different choices of the measure of strain correspond different theories of finite linear viscoelasticity. Much work has been done in order to understand the effect of velocity profile and heat transfer in viscoelastic fluids. In the last few decades, heat and velocity analysis fluid flow through a flat plate have attracted a considerable attention of researchers because such process exist in many branches of science and technology [2]-[4]. In most of the studies, the effects of magnetohydrodynamics in a fluid flow became interested because of it's application in engineering. Many researches have studied the magnetohydrodinamics in viscoelastic fluid [7]-[8]. Kayvan [9] had presented that all parameter such as Reynolds number, Weissenberg number, and the magnetic number have a profound effect on the velocity profiles. Kasim [10] studied magnetohydrodynamic flow of viscoelastic fluid past over a flat plate in steady state and incompressible, that was solved numerically by Box-Keller method. In this research, the free convection flow in viscoelastic fluid with the effect of magnetohydrodynamics is

analyzed and solved with the explicit finite difference scheme of forward time and central space (FTCS).

METHODOLOGY

In order to study the problem of MHD viscoelastic fluid past over a flat plate, several steps are used to solve this problem as follows

- Thermodynamics conservation law, Newton's second law, and mas conservation are used to constructing the equation of energy, momentum, and continuity .
- Determining boundary condition and several related parameters such as visco-elastic number (K), Prandtl number (Pr), Magnetic number (M), and Euckert number (Ec).
- The stream functions are used to transform the mathematical model into non-dimentional form.
- Forward in time and centered in space scheme (FTCS) is used to discretized the mathematical model and the graphical illustrations help to understand the physics of the problem.
- Finding the effect visco-elastic (K), Magnetic parameter (M) and Prandtl number (Pr) parameters on velocity profile (f') and temperature profile (θ).

MATHEMATICAL FORMULATION

Figure 1. Physical Model of Visco-elastic Fluid Past Over A Flat plate

This Problem considered steady two dimensional flow with constant velocity U_w to the free stream velocity U_∞ , as shown in Figure 1, where the *x*- axis extends parallel to the plate and *y* -axis extends upwards normal to the plate. The type of tensor that is used in the momentum equation is Waltes'b fluid[5]. Thermodynamics conservation law, Newton's second law, and mas conservation are used to construct Mathematical model as follows [6] $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$ (1)

$$u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y} = \alpha \frac{\partial^2 T}{\partial y^2} + \frac{v}{c_p} \left(\frac{\partial u}{\partial y}\right)^2$$
(2)

$$u\frac{\partial u}{\partial x} + v\frac{\partial v}{\partial y} = \frac{\mu_0}{\rho} \left[\frac{\partial^2 u}{\partial y^2} \right] - \frac{k_0}{\rho} \left[u \left(\frac{\partial^3 u}{\partial x \partial y^2} \right) + v \frac{\partial^3 u}{\partial y^3} - \frac{\partial u}{\partial y} \left(\frac{\partial^2 u}{\partial y \partial x} \right) + \frac{\partial u}{\partial x} \left(\frac{\partial^2 u}{\partial y^2} \right) \right] - \frac{1}{\rho} \sigma u B_0^2$$
(3)

with boundary condition:

$$u = U_{x}, \quad v = V_{x}(x), \quad T = T_{w}$$
 at

$$y = 0$$
 (4)

$$u = U_{\infty}, \quad \frac{\partial u}{\partial y} = 0, \quad T = T_{\infty}$$
 at

$$y \to 0$$
 (5)

The matematical model can be non-dimensionalized using stream function Ψ . So the velocity components can be written as

$$u = \frac{\partial \psi}{\partial y}, \qquad v$$
$$= -\frac{\partial \psi}{\partial x} \tag{6}$$

The stream function can be made dimensionless as follows:

$$\psi = U_{\infty} x v(2)^{\frac{1}{2}} f(\eta), \qquad \theta(\eta) = \frac{T - T_{\infty}}{T_w - T_{\infty}}$$
$$, \eta = \left(\frac{U_{\infty}}{2xv}\right)^{\frac{1}{2}} y \tag{7}$$

by substituting (6)-(7) into (1)-(3), dimensionless equation can be obtained:

$$\frac{1}{P_{r}}\theta'' + f\theta' + E_{c}(f'')^{2} = 0$$

$$f''' + ff'' + \frac{K}{2}[ff'''' + 2f'f''' - (f'')^{2}] - Mf' = 0$$
(8)
(9)

with boundary condition:

$$f(0) = f_w \quad f'(0) = \lambda_m \quad f'(\infty) = 1,$$
(10)

$$f''(\infty) = 0, \quad \begin{array}{l} \theta(0) = 1, \\ \theta(\infty) = 0 \end{array}$$
(11)

where viscoelastic parameter (K), moving parameter (λ_m) , Euckert number (Ec) and Magnetic parameter (M) defined as:

ISSN : 2460-0849

$$K = \frac{k_0 U_{\infty}}{\rho v}, \quad \lambda_m = \frac{U_w}{U_{\infty}}, \quad Ec = \frac{U_{\infty}^3}{C_p (T_w - T_{\infty})}, M$$
$$= \frac{k_0 U_{\infty}}{\rho v}$$
(12)

NUMERICAL SOLUTON

In order to solve the Eqs. (8) - (9) under the initial and boundary condition (10)-(11) an explicit finite difference scheme of forward time and central space (FTCS) type has been employed. The finite difference equations corresponding to Eqs. (8)–(9) are discretized using the (FTCS) Method as follows:

$$r_{3}(f_{i+2} - f_{i-2}) + A(f_{i+1} - f_{i-1}) + r_{2}(f_{i}f_{i+1} - f_{i}f_{i-1}) + C(f_{i}^{2}) + \frac{\kappa}{2} [r_{4}f_{i}(f_{i+2} - f_{i-2}) + G(f_{i+1}f_{i+2} - f_{i+1}f_{i-2} - f_{i-1}f_{i+2} + E((f_{i+1})^{2} + (f_{i-1})^{2})) + F(f_{i-1}f_{i+1})] = 0$$

$$(13)$$

$$= \frac{\left(\frac{r_2}{Pr} + r_1 f_i\right)\theta_{i+1} + \left(\frac{r_2}{Pr} + r_1 f_i\right)\theta_{i-1} + Ec.r_2(f_{i+1} - 2f_i + f_{i-1})}{\left(\frac{2r_2}{Pr}\right)}$$
(14)

further the Gauss Seidel iteration method is used in equation (13), as follows:

$$f_{i} = \left[\left(-r_{3}(f_{i+2} - f_{i-2}) - A(f_{i+1} - f_{i-1}) - r_{2}(f_{i}f_{i+1}) - \frac{\kappa}{2} [r_{4}f_{i} (f_{i+2} - f_{i-2}) + G(f_{i+1}f_{i+2} - f_{i-1}f_{i+2} - f_{i-1}f_{i+2} + E((f_{i+1})^{2} + (f_{i-1})^{2})) + F(f_{i-1}f_{i+1})] \right) / C \right]^{\frac{1}{2}}$$
(15)

where $r_1 = \frac{1}{2\Delta y}$, $r_2 = \frac{1}{\Delta y^2}$, $r_3 = \frac{1}{2\Delta y^3}$, $r_4 = \frac{1}{\Delta y^4}$, $A = -2r_3 - Mr_1$, $C = Kr_4 - 2r_2$, $G = 2r_1r_3$, $E = -4r_1r_3 - r_4$, $F = 8r_1r_3 - 2r_4$

RESULT AND DISCUSSION

In order to get a physical insight into the problem, factors such as velocity, temperature, have been discussed by assigning numerical values to various parameters obtained in the mathematical formulation of the problem and the results are graphically shown in Figs. 1–8.

Figure 1.Effect of viscoelastic parameter K on temperature profile

Figure 2. .Effect of viscoelastic parameter K on velocity profile

Figure 3. Effect of magnetic parameter M on temperature profile

Figure 4. Effect of magnetic parameter M on velocity profile

Figure 6. Effect of Pradntl number *Pr* on velocity profile

It is observed from fig.1 and Fig.2 that an increase in the value viscoelastic parameter increase the temperature of the fluids but decrease the velocity profile.

The presence of transverse magnetic field produces the Lorentz force. As the Lorentz force increases, the fluid exhibits a resistance to this force by increasing the friction between its layers. This resistance appears as an increase in the temperature, the temperature profile increase when the magnetic parameter increase that describe in Fig.3. The existence of a transverse magnetic field to an electrically conducting fluid gives rise to a type force, called as Lorentz force. This force has the tendency to slow down the motion of the fluid. The result

qualitatively agrees with the expectations, since magnetic field give force on the free convective flow which decreases the motion of the fluid Fig.4.

It is clear from Fig.6 that the velocity profiles decrease for increasing the Prandtl number. As the Prandtl number increases, viscous forces tend to suppress the buoyancy force which decreases the fluid velocity in the boundary layer. Temperature profile decrease when Pradtl number increase Fig.5.

CONCLUSION

We have examined the influence of variable viscosity and magnetic on viscoelastic fluid flow over a flat plate. The FTCS method is used to solve the problem and the numerical results are presented to analyze the fluid flow, temperature profile and velocity profile. The following main conclusions can be drawn from the present study:

- The velocity profiles decrease for the increasing of viscoelastic parameter, Padntl number, and magnetic parameter.
- The temperature profile increase for increasing viscoelastic parameter and magnetic parameter, but decrease with the increasing of Prdntl number.

ACKNOWLEDGMENT

We thanks to Prof. Dr. Basuki Widodo, M.Sc. and Dr. Chairul Imron, MI.Komp, lecturer, in the Department of Mathematics for sharing expertise, and to ITS Surabaya for encouraging us to present this paper on International Conference through the Funding with the number of 003246.68/IT2.11/PN.08/2015.

REFFERENCES

- [1]C.D. Bernard., and N, Walter (1961), Foundation of linear viscoelasticity, Department of mathematics, Cornegie Institute of Technology, Vol 33, No.2.
- [2] M.S. Abel, N. Mahesha, Heat transfer in MHD viscoelastic fluid flow over a stretching sheet with variable thermal conductivity, non-uniform heat source and radiation, Applied Mathematical Modelling 32 (2008) 1965–1983.
- [3] M.S. Abel, S.K. Khan, and K.V, Prasad Study of visco-elastic fluid flow and heat transfer over a stretching sheet with variable viscosity, International Journal of Non-Linear Mechanics, 37, 2002, 81-88.
- [4] C.Rita, K.D Sajal, Visco-Elastic Unsteady Mhd Flow Between Two Horizontal Parallel Plates With Hall Current, 2278-5728. Volume 5.
- [5]A.M.T Seyed, A. Ramin, K. Reza, On the Study of Viscoelastic Walters' B Fluid in Boundary Layer Flows, Volume 2012, Article ID 861508, 18 pages.
- [6] Widodo, B. Wen, X., and Ingham, D.B (1997). The Free Surface Fluid Flow in Arbitrary Shaaped in a Channel. Journal Of Engineering Analysis with Boundary Element. Vol 19, PP.299-308
- [7] A.B. Soraya , S. Salah, Entropy analysis for viscoelastic magnetohydrodynamic flow over a stretching surface, International Journal of Non-Linear Mechanics 45 (2010) 482–489.

- [8]K.B. Rushi., Sivaraj. R., Analytic heat and mass transfer of the mixed hydrodynamic/thermal slip MHD viscous flow over a stretching sheet, International Journal of Mechanical Sciences 53 (2011) 886–896.
- [9] S. Kayvan, K. Navid, ,M.T Seyed, Magnetohydrodynamic (MHD) flows of viscoelastic fluids in converging/diverging channels, International Journal of Engineering Science 45 (2007) 923–938.
- [10]Kasim, A.R.M. 2014. Convective Boundary Layer Of Viscoelastic Fluid Tesis Ph.D. UniversitiTeknologi Malaysia. Malaysia.