

5 - 7 June 2015

PROCEEDING Ditenas

Environmental Engineering & Water Technology Integrated Water Systems & Governance Water Science & Engineering

= PU

FACULTY OF ENGINEERING

Water Resources Engineering Department Faculty of Engineering, University of Brawijaya Jalan MT. Haryono no. 167 Malang 65145 - East Java - Indonesia Phone/ Fax. (0341) 562454 email: tsa_ub@ub.ac.id; wateresdev@ub.ac.id

icurdep

Conference Website:

www.wateresdev.ub.ac.id

cover picture in this book is copyrighted by the photographer who attend the Lomba Fotografi Pekan DAS Brantas IX-2010

ISSN: 2460-0849

THE 1ST YOUNG SCIENTIST INTERNATIONAL CONFERENCE OF WATER RESOURCES DEVELOPMENT

FOREWORD

The 1st Young Scientist International Conference of Water Resources Development and Environmental Protection 2015 (ICWRDEP 2015) Water Resources Engineering Department, Faculty of Engineering, University of Brawijaya was conducted on 5 - 7 June 2015. The Conference was organized by Faculty of Engineering and collaborated with International University of Malaya (UM), Universiti Sains Malaysia (USM) and Universiti Tun Hussein Onn Malaysia (UTHM).

The participants of the Conference are about 60 participants come from more than 20 higher institutions, such as; Sepuluh Nopember Institute Of Technology, Surabaya (ITS), Bandung Institute of Technology (ITB), Bogor Agricultural University (IPB), The University of Lampung, Sriwijaya University, University of Muhammadiyah Malang (UMM), University of Brawijaya (UB), Padjajaran University, State University of Malang (UM), National Institute of Technology (ITENAS), Tidar university, State Polytechnic of Malang (Politeknik Negeri Malang), Mulawarman University, State Polytechnic of Padang (Politeknik Negeri Padang), Malang National Technology Institute (Institut Teknologi Nasional Malang), BBWS Mesuji Sekampung, Bengkulu University, Diponegoro University (UNDIP), Nusa Cendana University, Khairun University, Bantara University, University of Jember, State Polytechnic of Samarinda (Politeknik Negeri Samarinda), UM (University of Malaya), Universiti Sains Malaysia (USM) and Universiti Tun Hussein Onn Malaysia (UTHM), and others, which reflect the importance water resources engineering development and environmental protection.

The topics of conference are Environmental Engineering & Water Technology, Integrated Water System & Governance and Water Science & Engineering. The conference provide platform for researchers, engineers and academician to meet and share ideas, achievement as well as experiences through the presentation of papers and discussion. These events are important to promote and encourage the application of new concept of water resources development and techniques to practitioners as well as enhancing the knowledge of environmental protection with the current requirements of analysis, design and construction of any engineering concept.

As Head of Water Resources Engineering Department, we would like to express our deepest gratitude to the Rector University of Brawijaya, Keynote Speakers (Prof Satoru Oishi & Prof Tsuyoshi Imai from Japan, Assoc. Prof Faridah Othman and Prof Amir Hamzah from Malaysia), International Advisory Board members, organizing committee and also to all participants.

We would like to express our deepest gratitude to the Faculty of Engineering conducted such conference. This is the first International conference for the Department and we expect that this is will become 2nd annual activity for our Department.

Malang, 5 June 2015

Head of Water Resources Engineering Department Faculty of Engineering University of Brawijaya Ditenas

Editorial Boards

Dr. Ery Suhartanto, ST.,MT. (University of Brawijaya)
Dr.Ir. Pitojo Tri Juwono, MT. (University of Brawijaya)
Anggara WWS, ST.,M.Tech. (University of Brawijaya)
Dr.Ir. Ussy Andawayanti, MS. (University of Brawijaya)
Fahmi Hidayat, ST.,MT. (Perum Jasa Tirta 1)
Gatot Eko Susilo, ST.,M.Eng.Env.,Ph.D (The University of Lampung)

Editorial Reviewers

Prof. Dr. Ir. Mohammad Bisri, MS. (University of Brawijaya) Prof. Ir. Dr. Amir Hashim bin Mohd Kassim (UniversitiTun Hussein Onn Malaysia) Prof. Tsuyoshi Imai (Yamaguchi University, Japan) Prof. Dr. Ir. Suhardjono, M.Pd.Dipl.HE (University of Brawijaya) Prof. Satoru Oishi (Kobe University, Japan) Prof. Dr. Nor Azazi Zakaria (Universiti Sains Malaysia) Dr.Ir. Rispiningtati, M.Eng. (University of Brawijaya) Ir. Moh. Sholichin, MT., Ph.D (University of Brawijaya) Prof. Dr. Ir. Nadjaji Anwar, M.Sc (Sepuluh November Institute of Technology) Ir. Dantje Kardana N, M.Sc., Ph.D (Bandung Institute of Technology) Dr.Eng. Tri Budi Prayogo, ST., MT. (University of Brawijaya) Dian Sisinggih, ST., MT., Ph.D (University of Brawijaya) Ir. Abubakar Alwi, Ph.D (University of Tanjung Pura) Dr. Eng. Andre Primantyo Hendrawan, ST., MT. (University of Brawijaya) Assoc. Prof. Dr. Faridahbinti Othman (Universiti Malaya) Dr. Ir. Widandi Soetopo, M.Eng. (University of Brawijaya) Dr. Eng. Donny Harisuseno, ST., MT. (University of Brawijaya)

Table of Content

Page

Forewordi
Editorial Boardsiii
Editorial Reviewersiii
THEME 1 Environmental Engineering & Water Technology
Circulation Effect Of Coffee Wastewater Flow In Water Hyacinth
Phytoremediation A-1
Elida Novita, Sri Wahyuningsih, Siswoyo Soekarno, Betty Siska Rukmawati
Potential Greywater Quantification For Reuse In Newton Residence Apartment
Bandung, Indonesia
Dyah Asri Handayani Taroepratjeka, Yulianti Pratama, Devi Ayu Putrianti
· · elle
Analyzing Water Quality Changes Due To Agriculture Activities In Seputih
Irrigation Area, Lampung Province, Indonesia
Eka Desmawati, Rusdi Effendi, Yudha Mediawan, Gatot E. Susilo
Evaluation of Environmentally Friendly Flushing in Wlingi and Lodoyo
Reservoirs
Fahmi Hidayat
Dynamic of Dissolved Oxygen At Inlet Zone Of Fish Cage Area In Cirata Reservoir,
West Java, Indonesia
Fanny Novia, Priana Sudjono, Arief Sudrajat
Intensive Agriculture of Peat Land Areas To Reduce Carbon Emission And Fire Prevention (A Case Study In Tanjung Jabung Timur Tidal Lowland Reclamation
Jambi)

Momon Sodik Imanudin1, and R.H Susanto

Mikro-Nano Activated Charcoal from Ricestraw as Adsorben Heavy Metals Leachate	
Case Studies on "TPA JATIBARANG", Semarang Jawa Tengah	A-49
Rizki Januarita, Anis Ulfa W.A, Azka Azizah, Hilma Muthi'ah	

Determination of Water Quality Status at Karang Mumus River Samarinda,	
Indonesia	A-59
Sri lestari, Diana Arfiati, Aniek Masrevaniah, Moch. Sholichin	

Efficiency Analysis of Cod And Bod Decline Wastewater Coffee On Phytoremediation	
Process Using Water Hyacinth (Eichornia Crassipes (Mart.) Solms)A	-62
Setyorini, Sri Wahyuningsih, Elida Novita	

Green Roof: Vegetation Response towards Lead and Potassium	A-69
Khairul Rahmah Ayub, Aminuddin AB Ghani, Nor Azazi Zakaria	

Water Content – Density Criteria of Bentonite – Fly Ash Mixtures for Liners	Compacted Soil
Andre Primantyo Hendrawan, Dian Chandrasasi1, Runi Asmaranto, Anggara Wiyono Wit Irnawati Gunawan, Zaenal Abidin	Saputra, Linda
25	
rena	

Integrated Water Systems & Governance THEME 2

Experience in Rainwater Harvesting Application For Household Scale	In Bandar
Lampung, Indonesia	B-1
Gatot Eko Susilo	

Estimation of the Flood Using Data Modis to Support Integrated Water Resources	
Management	.B-9
Gusta Gunawan, Alex Surapati, Besperi	

Alternative Selection for Water Resource Potential in Brantas Watershed	
For The Development of Hydroelectric Power Plant	B-16
Deviany Kartika, Miftahul Arifin	

Analysis Availability on the Clean Water Infrastructure at PDAM Ternate	B-23
Nani Nagu	

Rainfall Estimation Using Weather Radar and the Flood Simulation at Ciliwung
River Indonesia AnalysisB-30
Ratih Indri Hapsari, Agus Suhardono, Reni Sulistyowati
Integrated Coastal Zone Management with Watershed Management Based On
Co-Management: A Case Study Porong River Along Sidoardjo-Pasuruan
Coastal AreaB-37
Rudianto
The Evaluation of Song Bajul Springs Potency For Resident's Clean Water Supply
In Desa Pucanglaban Kecamatan Pucanglaban Kabupaten Tulungagung In
2015-2030
Sam Yudi Susilo, Hendra Agus
Flow Analysis On Pipe Distribution Network Using Differential Evolution Algorithm (DE)B-54
Sulianto
Hydroinformatics In Volumetric And Real Time Irrigation Discharge
MonitoringB-63
Susi Hidayah, Aditya Prihantoko, and Irfan Sudono
Multiple Stacked Rule Curves For Reservoir Operation Of Medium Reservoir B-71
Widandi Soetopo, Lily Montarcih Limantara, Suhardjono, Ussy Andawayanti, Rahmah Dara Lufira
Water Balance Analysis Due To the Human Live RequirementsB-76
Agus Suharyanto, Very Dermawan, Mustika Anggraeni, Pudyono, Kurniawan Sigit Wicaksono,
Diah Susilowati
Optimization System Network Providing Water Study Blitar District Of Kademangan East Java Indonesia
Rahmah Dara Lufira, Suwanto Marsudi, Jadfan Sidqi F., Evi Nur Cahya
Safety Inspection of Prijetan DamB-89
Runi Asmaranto

Analysis of Conditions Changes In Sumi Dam Hydrology Parameters	
Design	B-100
Anggara WW. Saputra	

THEME 3 Water Science & Engineering

Investigation of Marine Debris In Kuta Beach, BaliC-1
Adli Attamimi, Noir P. Purba, Santi R.Anggraini, Syawaludin A. Harahap
Design of Marine Propulsion System Based On Structural Vibration
Asep Andi, Radite Praeko Agus Setiawan
Transmission and Wave Reflection on Double Submerged Breakwater
Bambang Surendro
Calibration of Measurement on Modelling Stepped SpillwayC-24
Denik Sri Krisnayanti, Soehardjono, Moch.Sholichin, Very Dermawan, Nina B.Rustiati
Estimates of Time of Concentration in Rainfall, Runoff and Infiltration
Application
Dian Noorvy, Lily Montarcih, Donny Harisuseno
Comparing the Calculation Method of the Manning Roughness Coefficient in Open
Channels
Hari Wibowo
Grouping Watersheds Through Hierarchical Clustering Approach
Judi K. Nasjono, Mohammad Bisri, Agus Suharyanto, Dian Sisinggih
Study on the Effectivity of Decreasing Permeability and Increasing Shear Strength of Sandy Beach Soil And River Soil By Using Exoplysaccharide Biopolymer
Emma Yuliani, Maytri Handayani, Ariska Desy Haryani

Heat Effect on Fluid Free Convection Flow Past A Porosity Sphere	C-70
Mohamad Tafrikan, Basuki Widodo, Chairul Imron	

Incompressible and Steady Mixed Convection Flow Past Over a Sphere
Mohammad Ghani, Basuki Widodo, Chairul Imron
Viscoelastic Fluid Past a Flat Plate with the Effect of Magneto hydrodynamic C-85
Putri Pradika Wanti, Basuki Widodo, Chairul Imron
Flow Measurement Under Sluice Gate Model
Rustiati, N.B., Suhardjono, Rispiningtati, Dermawan, V., Krisnayanti, D.S
Kinetic Modeling of Domestic Wastewater (Greywater Type) Using Uasb
Reactor
S. Syafrudin, P. Purwanto, S. Sudarno
An Imaging Technique for Identifying Flow Structure and Magnitude In
A Channel
Tommy E. Sutarto, Habir, S.S.N. Banjarsanti
The Numerical Solution Of Free Convection Flow of Visco-Elastic Fluid With Heat Generation Past Over A Sphere
Wayan Rumite, Basuki Widodo, Chairul Imron
Assessment of Sedimentation Patterns and the Threat of Flooding due to Reclamation in The Lamong Bay, Indonesia
Mohammad Sholichin, Tri Budi Prayogo, Sebrian Mirdeklis Beselly Putra, Rini Wahyu Sayekti
Design Improvements To The Physical Model Test Spillway Of Mujur Dam In Lombok Tengah Region
Dian Chandrasasi, Dwi Priyantoro, Anggara WW. Saputra
Hydropower Plant using Pump storage at Cisokan Dam

Model Test of Physical Spillway In Lesti Dam, Malang District East Java	C-155
Heri Suprijanto, Janu Ismoyo, Sumiadi, Yuli Astuti	

A Network Rain Station in Reviewed of the Topography on Watershed	Widas District
Nganjuk – East Java of Indonesia	C-163

Eri Prawati, Suhardjono, Lily Montarcih, Rispiningtati

Application of Design Charts for Determination of Landfill Liner's Thickness C-170

Andre Primantyo Hendrawan, Anggara Wiyono Wit Saputra, Runi Asmaranto, Dian Chandrasasi, Hestina Eviyanti, Zaenal Abidin

Environmental Engineering & Water Technology

Incompressible And Steady Mixed Convection Flow Past Over A Sphere

Mohammad GHANI¹, Basuki WIDODO¹, Chairul IMRON¹

¹Department of Mathematics, Sepuluh Nopember Institute of Technology, 60111 Surabaya, Indonesia

*Corresponding author's e-mail : mohghani08@yahoo.co.id, b_widodo@matematika.its.ac.id, imron-its@matematika.its.ac.id

ABSTRACT

Mixed convection flow is the combination between free convection flow and forced convection flow. In this research, the pressure and buoyancy forces are significant. The governing equations are taken from Navier-Stokes equation that includes continuity, momentum, and energy equations. These equations are obtained from Boussinesq and boundary layer approximations. These non-dimensional equations are then transformed into non-dimensional equations to make easy in numerical processes. Further, these non-dimensional equations are transformed into non-similar equations and solved numerically using the finite difference method. The numerical results are analyzed the effect of Prandtl parameter (P_r) and visco-elastic parameter (K) to velocity profile (f') and temperature profile (θ). The temperature profile decreases and the velocity profile decreases when the prandtl parameter increases. Meanwhile, the temperature profile increases and the velocity profile decreases when the visco-elastic parameter increases.

KEYWORDS

Navier-Stokes, Mixed Convection Flow, Visco-elastic Fluid, Boundary Layer Theory

INTRODUCTION

The boundary layer problems of mixed convection flow past over a sphere are fundamental theory and have been applied widely in engineering applications. Many researchers have investigated these problems in different geometries such as flat plate, cone, and cylinder with type of fluids Newtonian or non-Newtonian. Boundary layer on fluid is a layer near surface of medium so the effect of viscosity and velocity profile to be significant because of shear stress at the wall (Sleigh and Andrew, 2001). In this research, the mixed convection flow that is the combination between free convection flow and forced convection flow is analyzed (Kreith and Frank, 1994). The researches of mixed convection past over a sphere have been studied by several researchers such as Amin et al (2002) studied mixed convection flow past over a surface of sphere in steady state and incompressible with the constant temperature. Further, the numerical solutions were solved by the Box-Keller method. Nazar et al (2010) studied mixed convection flow past over a sphere with Newtonian heating. Heat transfer of Newtonian heating was proportional to local surface temperature. Salleh and Ibrahim (2002) studied mixed convection flow past over a sphere at lower stagnation point with Newtonian heating. Temperature profile and velocity profile were analyzed based on mixed convection parameter and Prandtl number. Kasim (2014) studied mixed convection flow of viscoelastic fluid past over a sphere in steady-state and incompressible that was solved numerically by the Box-Keller method. Based on the previous researches, this research is studied mixed convection flow of visco-elastic fluid past over a surface of sphere with the effect of maghnetohydrodynamics in steady state and incompressible. These non-similar equations are solved numerically using the finite difference method with iterative method to solve non-linear ordinary differential equations. In this research, it is only investigated laminar flow of visco-elastic fluid past over a sphere surface. This means that the velocity of fluid is

small because of the visco-elastic effect that is shown by the Reynolds number $R_{e} < 500$ (Widodo, 2012).

MATHEMATICAL MODELLING

Consider steady-state two-dimensional mixed convection flow of visco-elastic incompressible fluid past over a sphere with the effect of maghnetohydrodynamic (MHD) where a is radius of sphere. The physical model of this research is illustrated as follows.

Figure 1. Physical Model of Free Convection of Visco-elastic Fluid Past Over a Sphere

Figure 1 gives illustration of the physical model and coordinate system on mixed convection flow of visco-elastic fluid past over a sphere surface. It assumed that q_w is heat flux of sphere surface and T_{∞} is temperature of visco-elastic fluid. Based on the Boussinesq and boundary layer approximations, then obtained the following basic equations of continuity, momentum, and energy equations that have been studied by Widodo (2013) and Kasim (2014).

$$\frac{\partial}{\partial \bar{x}}(\bar{r}\bar{u}) + \frac{\partial}{\partial \bar{y}}(\bar{r}\bar{v}) = 0$$
(1)
$$\bar{u}\frac{\partial \bar{u}}{\partial \bar{x}} + \bar{v}\frac{\partial \bar{u}}{\partial \bar{y}} = \bar{u}_{\bar{e}}\frac{\partial \bar{u}_{\bar{e}}}{\partial \bar{x}} + \bar{v}\left[\frac{\partial^{2}\bar{u}}{\partial \bar{x}^{2}}\right] - \frac{k_{0}}{\rho}\left[\bar{u}\left(\frac{\partial^{3}\bar{u}}{\partial \bar{x}^{3}\bar{y}^{2}}\right) + \bar{v}\frac{\partial^{3}\bar{u}}{\partial \bar{y}^{3}} + \frac{\partial \bar{u}}{\partial \bar{x}}\left(\frac{\partial^{2}\bar{u}}{\partial \bar{y}^{2}}\right)\right] + \frac{k_{0}}{\rho}\left[\frac{\partial \bar{u}}{\partial \bar{y}}\left(\frac{\partial^{2}\bar{u}}{\partial \bar{y}\partial \bar{x}}\right)\right] - g\beta(\bar{T} - \bar{T}_{\infty})\sin\left(\frac{\bar{x}}{\bar{a}}\right) - \frac{1}{\rho}\sigma(\bar{u} - \bar{u}_{\bar{e}})B_{0}^{2}$$
(2)

$$\left(\bar{u}\frac{\partial\bar{T}}{\partial\bar{x}} + \bar{v}\frac{\partial\bar{T}}{\partial\bar{y}}\right) = \alpha \frac{\partial^2\bar{T}}{\partial\bar{y}^2}$$
(3)

with the following boundary conditions.

$$\bar{u} = \bar{v} = 0, \frac{\partial \bar{T}}{\partial \bar{y}} = -\frac{q_w}{k} \text{ at } \bar{y} = 0 \text{ and } \bar{u} = \overline{u_e}(x), \frac{\partial \bar{u}}{\partial \bar{y}} = 0, T = T_{\infty} \text{ at } \bar{y} \to \infty$$
(4)

where $u_{\varepsilon}(x)$ is velocity of local free flow at the outside of boundary layer that is defined by $u_{\varepsilon}(x) = \frac{3}{2}U_{\infty}\sin\left(\frac{\tilde{x}}{\tilde{a}}\right)$. Further, the non-dimensional variables are introduced as follows.

$$x = \frac{\bar{x}}{a}, y = R_{\sigma}^{\frac{1}{2}}\left(\frac{\bar{y}}{a}\right), r(x) = \frac{\bar{r}(\bar{x})}{a}, u = \frac{\bar{u}}{U_{\infty}}, v = R_{\sigma}^{\frac{1}{2}}\left(\frac{\bar{v}}{U_{\infty}}\right), \theta = \frac{R_{\sigma}^{\frac{1}{2}}(T - T_{\infty})k}{q_{w}a}, u_{\sigma}(x) = \frac{\overline{u_{\sigma}}(\bar{x})}{U_{\infty}}$$
(5)

By substituting Equation (5) into Equations (1) to (3), then obtained the following non-dimensional equations.

$$\frac{\partial}{\partial x}(ru) + \frac{\partial}{\partial y}(rv) = 0 \tag{6}$$

ISSN : 2460-0849

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = u_e \frac{\partial u_e}{\partial x} + \frac{\partial^2 u}{\partial y^2} + \lambda \theta \sin(x) - K \left[v \frac{\partial^3 u}{\partial y^3} + u \frac{\partial^3 u}{\partial x \partial y^2} \right] + K \left[\frac{\partial u}{\partial x} \frac{\partial^2 u}{\partial y^2} + \frac{\partial u}{\partial y} \frac{\partial^2 v}{\partial y^2} \right] - \frac{M(u - u_e)}{2\theta}$$
(7)

$$u\frac{\partial\theta}{\partial x} + v\frac{\partial\theta}{\partial y} = \frac{1}{P_r}\frac{\partial^2\theta}{\partial y}$$
(8)
where K and A are non-dimensional parameters of visco electic and mixed convection respectively

where K and λ are non-dimensional parameters of visco-elastic and mixed convection respectively that are defined as $K = \frac{k_0}{\rho} \left(\frac{U_{\infty}}{av} \right)$ and $\lambda = \frac{G_r}{R_e^2}$ respectively with the following boundary

conditions.

$$u = v = 0, \theta' = -1 \text{ at } y = 0 \text{ and } u_{\theta} = \frac{3}{2}\sin(x), \frac{\partial u}{\partial y} = 0, \theta = 0 \text{ at } y \to \infty$$
(9)

Further, according to Equation (9), then Equations (6) to (8) are solved using the following stream function

$$\psi = xr(x)f(x,y), \theta = \theta(x,y)$$
(10)
where ψ is defined as

$$u = \frac{1}{r} \frac{\partial \psi}{\partial y} \text{ and } v = -\frac{1}{r} \frac{\partial \psi}{\partial x}$$
(11)

Based on Equation (11), then Equations (6) to (8) are written as the following non-similar equations.

$$\begin{pmatrix} \frac{\partial^3 f}{\partial y^3} \end{pmatrix} + \left(1 + x \frac{\cos(x)}{\sin(x)} \right) f \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial f}{\partial y} \right)^2 + \frac{9}{4} + \lambda \theta \frac{\sin(x)}{x} - 2K \left[\frac{\partial f}{\partial y} \frac{\partial^3 f}{\partial y^3} \right] + \\ K \left[\left(1 + x \frac{\cos(x)}{\sin(x)} \right) \left(f \frac{\partial^4 f}{\partial y^4} + \left(\frac{\partial^2 f}{\partial y^2} \right)^2 \right) \right] = x \left(\frac{\partial f}{\partial y} \frac{\partial^2 f}{\partial x \partial y} - \frac{\partial^2 f}{\partial y^2} \frac{\partial f}{\partial x} \right) - M \frac{\partial f}{\partial y} + \frac{3}{2}M \frac{\sin x}{x} + \\ K x \left[\frac{\partial^3 f}{\partial y^3} \frac{\partial^2 f}{\partial x \partial y} - \frac{\partial^4 f}{\partial y^4} \frac{\partial f}{\partial x} - x \frac{\partial^2 f}{\partial y^2} \frac{\partial^3 f}{\partial x \partial y^2} + \frac{\partial f}{\partial y} \frac{\partial^4 f}{\partial x \partial y^3} \right]$$
(12)

$$x\left(\frac{\partial f}{\partial y}\frac{\partial \theta}{\partial x} - \frac{\partial f}{\partial x}\frac{\partial \theta}{\partial y}\right) = \frac{1}{P_r}\frac{\partial^2\theta}{\partial y} + \left(1 + x\frac{\cos(x)}{\sin(x)}\right)f\frac{\partial\theta}{\partial y}$$
(13)

with the following boundary conditions.

$$f = 0, \frac{\partial f}{\partial y} = 0, \theta' = -1 \text{ at } y = 0 \text{ and } \frac{\partial f}{\partial y} \to \frac{3}{2} \frac{\sin x}{x}, \frac{\partial^2 f}{\partial y^2} = 0, \theta \to 0 \text{ at } y \to \infty$$
(14)

At the lower stagnation point ($x \approx 0$), then Equations (12) to (13) are written as

$$f''' + 2ff'' - f'^{2} + \frac{9}{4} + \lambda\theta + 2K(ff'''' - f'f''' + f''^{2}) - M\left(f' - \frac{3}{2}\right) = 0$$
(15)

$$\frac{1}{P_r}\theta^{\prime\prime} + 2f\theta^\prime = 0\tag{16}$$

with the following boundary conditions.

$$f(0) = f'(0) = 0, \theta'(0) = -1 \text{ at } y = 0 \text{ and } f' \to \frac{3}{2}, f'' = 0, \theta \to 0 \text{ at } y \to \infty$$
(17)

NUMERICAL SOLUTION

Equations (15) and (16) are discretized using the finite difference method, then obtained $f_i = sqrt[(-1) * (s_1(f_{i+2} - 2f_{i+1} + 2f_{i-1} - f_{i-2}) + t_1f_if_{i+1} + t_3f_if_{i-1} + t_4f_{i+1}^2 + t_6f_{i-1}^2 + t_6f_{i-1}^$

$$t_{5}f_{i+1}f_{i-1} + \frac{9}{4} + \lambda\theta_{i} + t_{7}f_{i}f_{i+2} + t_{8}f_{i}f_{i-2} + t_{9}f_{i+1}f_{i+2} + t_{10}f_{i+1}f_{i-2} + t_{11}f_{i-1}f_{i+2} + t_{12}f_{i-1}f_{i-2})/t_{2}]$$
(18)

where $s_1 = \frac{1}{2\Delta y^3}$, $s_2 = \frac{2}{\Delta y^2}$, $s_3 = \frac{1}{4\Delta y^2}$, $s_4 = \frac{1}{\Delta y^4}$, $s_5 = \frac{1}{4\Delta y^4}$, $s_6 = \frac{1}{\Delta y^4}$, $t_1 = s_2 - 8Ks_4 - 8Ks_6$,

$$\begin{split} t_2 &= -2s_2 + 12Ks_4 + 8Ks_6, t_3 = s_2 - 8Ks_4 - 8Ks_6, \\ t_4 &= -s_3 + 4Ks_5 + 2Ks_6, t_5 = 2s_3 - 8Ks_5 + 4Ks_6, t_6 = -s_3 + 4Ks_5 + 2Ks_6, t_7 = 2Ks_4, t_8 = 2Ks_4, t_9 = -2Ks_5, t_{10} = 2Ks_5, t_{11} = 2Ks_5, \end{split}$$

$$t_{12} = -2Ks_5$$

$$\theta_i = \frac{[(r_1 + r_2 f_i)\theta_{i+1} + (r_1 - r_2 f_i)\theta_{i-1}]}{2r_1}$$
where $r_1 = \frac{1}{p_r \Delta y^2}$ and $r_2 = \frac{1}{\Delta y}$.
(19)

RESULTS AND DISCUSSION

The numerical results of this research are the effect of Prandtl number and visco-elastic parameter to temperature profile (θ) and velocity profile (f').

Figure 2. Prandtl number variation (P_r) for Temperature Profile (θ) with the boundary layer thickness of y

Figure 3. Prandtl number variation (P_r) for Velocity Profile (f') with the boundary layer thickness of y

Figure 4. Visco-elastic parameter variation (*K*) for Temperature Profile (θ) with the boundary layer thickness of y

Figure 5. Visco-elastic parameter variation (K) for Velocity Profile (θ) with the boundary layer thickness of y

Figure 2 shows the effect of Prandtl number to temperature profile (θ). In this case, Prandtl number is related to heat distribution, so that when Prandtl number increases then heat distribution increases. It causes temperature profile decreases because of the increased heat distribution. The result in Figure 3 is caused by the increased heat distribution, so that the decreased temperature profile (f') causes density of visco-elastic fluid more increased. In this case, fluid flow is downward because of gravitation, so that the velocity profile is more decreased. Figure 4 shows the effect of visco-elastic parameter to temperature profile (θ). This indicates that temperature profile is more increased when the visco-elastic parameter is more increased. This is caused, the more increased visco-elastic parameter causes the friction between fluid and the sphere surface more increased, so that the temperature on sphere surface is more increased because of the more increased friction. Meanwhile, Figure 5 shows the effect of visco-elastic parameter is more increased because of the more increased friction between visco-elastic parameter is more increased. This is caused by the more increased friction between surface is more increased because of the more increased friction. Meanwhile, Figure 5 shows the effect of visco-elastic parameter is more increased because of the more increased friction. Meanwhile, Figure 5 shows the effect of visco-elastic parameter is more increased. This is caused by the more increased friction between visco-elastic parameter is more increased.

CONCLUSIONS

In this research, the problem of mixed convection flow on visco-elastic fluid past over a sphere surface with the effect of maghnetohydrodynamic (MHD) has been studied. The non-similar equations of momentum and energy are solved numerically using the finite difference method with the iterative method. The effect of Prantdl number and visco-elastic parameter to the characteristic of temperature profile (θ) and velocity profile (f') have been obtained and discussed. Then, the conclusions of this research can be written as follows.

- 1. The temperature profile decreases and the velocity profile decreases when Prandtl number variation is more increased.
- 2. The temperature profile increases and the velocity profile decreases when visco-elastic parameter variation is more increased.

ACKNOWLEDGEMENT

We wish acknowledge great appreciation to Sepuluh Nopember Institute of Technology Surabaya for giving us the chance to present this research product into International Conference through the Funding Agreement Latter number 003246.68/IT2.11/PN.08/2015.

REFERENCES

- Amin, N., Nazar, R., and Pop. I. (2002). On The Mixed Convection Boundary Layer Flow About A Solid Sphere With Constant Surface Temperature. The Arabian Journal for Science and Engineering. Volume 27. Number 2C.
- Kasim, A.R.M. (2014). Convective Boundary Layer Of Viscoelastic Fluid Tesis Ph.D. Universiti Teknologi Malaysia.

Kreith and Frank. (1994). Prinsip – prinsip Perpindahan Panas. Erlangga. Jakarta.

- Nazar, R., Pop, I., Salleh, M.Z. (2010). Mixed Convection Boundary Layer Flow About A Solid Sphere With Newtonian Heating. Arch. Mech. 62, 4, pp. 283 303.
- Salleh, M.Z and Ibrahim, R.N.K. (2002). Mixed Convection Boundary Layer Near The Lower Stagnation Point Of A Solid Sphere With Newtonian Heating. Proceedings of the 7th WSEAS International Conference on SYSTEM SCIENCE and SIMULATION in ENGINEERING (ICOSSSE'08).
- Sleigh and Andrew. (2001). An Introduction to Fluid Mechanics. University of Leeds. England.
- Widodo, B. (2012). Pemodelan Matematika. Itspress, Surabaya, Chapter 4, pp. 28-30.
- Widodo, B. (2013). The Influence of Hydrodynamics on the Spread of Pollutants in the Confluence of two Rivers. Applied Mathematical Sciences. HIKARI. Vol. 7, 2013. No 123, 6115 6123.