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Abstract. A Latin square of order n is an array or matrix of size n × n where in
each row and column contains n different numbers or symbols. Enumeration of Latin
square is not easy problem even using a computer. Until now, the exact number of
Latin square is known only for 1 ≤ n ≤ 11. The basic in Latin square is permuted
n numbers. By considering the characteristic of permutation that appears in Latin
square-x, in this paper we will discuss about theory of permutation about Latin square
and then applying its to enumeration of Latin square-x.
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1 Introduction

Enumeration is a problem that associated with counting. In combinatorics, enu-
meration means determining the exact number of elements of finite sets. For
example, established basket ball team consist of 5 players from 7 candidate
players. The number teams that can be established are 21.

Latin square of order n is an array or matrix size n×n with n symbols such
that in each row and column filled by the permutation of symbols [4], in other
word the entries in each row and in each column are distinct [5]. Latin square
firstly introduce by Swiss mathematician, Leonhard Euler. The study of Latin
square has long tradition in combinatorics [6]. A Latin square of order n can
be called by Latin square-x (doubly diagonalized) if both its diagonals consist
of n distinct symbols [3]. An example of Latin square-x is shown in Fig. 1.

Enumeration of Latin square is not easy problem even using computer. Until
now, the exact number of Latin square is known only for order 1 ≤ n ≤ 11[1,
2, 4].

2 3 1 4

1 4 2 3

4 1 3 2

3 2 4 1

Fig. 1. Latin Square-X of Order 4



The notion of permutation is related to the act of rearranging objects or
values. A permutation of a set of objects is an arrangement of those objects
into a particular order. For example there are six permutations from element of
the set {1, 2, 3}, that is (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2) and (3,2,1). For
simply, we write a permutation without parentheses and commas. So we will
write 123 rather than (1, 2, 3).

In algebra, especially group theory, permutation is a bijective mapping on
set X. A family of all permutations from X is called by symmetry group SX [8], if
X = {1, 2, 3 . . . , n} we write Sn rather than SX . Let i1i2 . . . in be a permutation
from X = {1, 2, . . . , n} and defines a function α : X → X as α(1) = i1, α(2) =
i2, . . . , α(n) = in. For i ∈ {1, 2, . . . , n} such that α(i) = i, then i fixed by α.

Permutation matrix is a square matrix such that in each column and row
there is exact one entry 1 and the others is 0. The example of permutation
matrix is shown in Fig. 2.

A =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0


Fig. 2. Permutation Matrix of Order 4

Let aij be entry of permutation matrix at ith row and jth column, from
matrix A we can get a permutation function α. If aij = 1, then α(i) = j. From
A we get a12 = a24 = a31 = a43 = 1, then we have α(1) = 2, α(2) = 4, α(3) = 1,
and α(4) = 3 and permutation representation of matrix A is 2413 (see Fig. 2).

From a Latin square order n, we can get n permutation matrix that represent
fixed number i ∈ {1, 2, . . . , n}. Let L be matrix from Latin square in Fig. 1 (see
Fig. 3), then from L we get four permutation matrices, that is L1, L2, L3 and L4

(see Fig. 4).

L =


2 3 1 4
1 4 2 3
4 1 3 2
3 2 4 1


Fig. 3. Matrix Representation from Latin Square

We can easily check that L = L1 + 2L2 + 3L3 + 4L4, or generally for order n,
L = L1 + 2L2 + + nLn. Let α1, α2, . . . , αn be permutation of L1, L2, . . . , Ln

respectively, again we can check that

αi(k) 6= αj(k) for i, j ∈ {1, 2, . . . , n} and i 6= j (1)



L1 =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

 L2 =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


3124 1342

L3 =


0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

 L4 =


0 0 0 1
0 1 0 0
1 0 0 1
0 0 1 0


2341 4213

Fig. 4. Permutations matrix from Latin Square and its permutation representation

2 Latin Square Transformation

From a Latin square L, we can get another Latin square L′ by the rule below:

• From Latin square L of order n we get n different permutation matrices,
that is L1, L2,. . ., Ln.
• From n permutation matrices we get n different permutation representation
• The ith row of L′ will be filled by permutation representation of matrix
Li for i = 1, 2, . . . , n.

For example, the permutation representation of L1, L2, L3 and L4 from Fig. 4
is 3124, 1342, 2431 and 4213 respectively, and then these permutations will be
filled to 4 x 4 array and get another Latin square, of course uniquely.

2 3 1 4

1 4 2 3

4 1 3 2

3 2 4 1

→

3 1 2 4

1 3 4 2

2 4 3 1

4 2 1 3

Fig. 5. Latin Square Transformation

It can be checked that after Latin square transformation thrice, we get initial
Latin square.

3 Method

3.1 Permutations from Latin Square-X

From number 1, 2, . . . , n in a Latin square we can get n different permutation
matrices of order n. Let aij be entry of permutation matrix at ith row and jth

column, then main diagonal entry is aii and secondary diagonal entry is aij with
i+ j = n+ 1.

We know that in permutation matrix, if aij = 1, then a permutation function
α satisfy α(i) = j. Because the entries at main diagonal and secondary diagonal
are distinct, we can conclude that permutation from Latin square-x i.e α, satisfy:



i. There is exactly one i such that α(i) = i.
ii. There is exactly one j such that α(j) + j = n+ 1. (2)

From (2) i we know that there is exactly one i ∈ {1, 2, . . . , n} that fixed by α.

3.2 Partition of Permutation

Let Pn be a set all permutation from Latin square-x of order n. Pn will be
partitioned into subsets namely Pn,i:j based on i, j that satisfy (2). For example
1423 ∈ P4,1:3 because α(1) = 1, α(3) + 3 = 5 and there is no other i, j ∈
{1, 2, 3, 4} satisfy (2).

For n even, Pn can be partitioned into n(n − 2) subsets and for n odd, Pn

can be partitioned into (n− 1)2 subsets. For example
• P4 = {P4,1:2, P4,1:3, P4,2:1, P4,2:4, P4,3:1, P4,3:4, P4,4:2, P4,4:3}.
• P5 = {P5,1:2, P5,1:4, P5,2:1, P5,2:5, P5,3:3, P4,4:1, P5,4:5, P5,5:2, P5,5:4}.

3.3 Enumeration of Permutation

We know that all permutation in Pn satisfy (2). Because of partitioning of
Pn into Pn,i:j, to enumerate all permutations from Latin square-X is equal to
enumerate the cardinality of each Pn,i:j or |Pn,i:j|. For n even or n odd with i 6= j,
it is easy to check that the value of |Pn,i:j| is not depend i and j, so |Pn,i:j| is the
same for all i, j. For n odd with i = j, the value of |Pn,i:i| is higher than others.
The value of |Pn| is equal to the sum all |Pn,i:j|. To enumerate all permutation
in Pn is used algebra software GAP (Group, Algorithm, Programming) [9].

For example,

• P4 = {1342, 1423, 4213, 3241, 4132, 2431, 2314, 3124}
• P5 = {14253, 14532, 13524, 15423, 52134, 52413, 32451, 42531, 21354,

25314, 41352, 45312, 51243, 53142, 23541, 35241, 24135, 34215,
31425, 43125}

3.4 Enumeration of Latin Square-X

It has been explained that by Latin square transformation, we get other Latin
square uniquely and all permutations from Latin square-x satisfy (1). Because
the uniquely of Latin square from Latin square transformation, the enumeration
problem of all possible Latin square-x is equal to problem of counting ”how to
select and arrange” n permutations from Pn to n× n array that produce Latin
square. This problem transformation made difficulty level of enumeration of
Latin square-x decrease.

Because Pn has been partitioned into Pn,i:j, we need to consider value of
i, j such that the n permutations that we selected can produce Latin square.



Of course we cant select two permutations from the same Pn,i:j, because the
number at position i, j is the same. For example, both 14253 and 14532 are
permutation from P5,1:2, the number at 1st and 2nd position are the same, that
is 1 and 4 respectively. Then from n permutations, the index i, j each Pn,i:j are
all different.

We defined collection of permutation Kn that can produce Latin square. For
example,

K4 = {{P4,1:2, P4,2:1, P4,3:4, P4,4:3}, {P4,1:2, P4,2:4, P4,3:1, P4,4:3}, {P4,1:3, P4,2:1,
P4,3:4, P4,4:2}, {P4,1:3, P4,2:4, P4,3:1, P4,4:2}}.

Then we have four possible collection of permutation for order 4, or we can write
|K4| = 4. Using GAP, we get |K5| = 4, |K6| = |K7| = 8, |K8| = |K9| = 4752.
We will enumerate the number of Latin square-x manually for order 4, for order
5, 6 and 7 we enumerate using algebra software GAP.

For order 4 we have P4 = {1342, 1423, 4213, 3241, 4132, 2431, 2314, 3124}
and K4 = {{P4,1:2, P4,2:1, P4,3:4, P4,4:3}, {P4,1:2, P4,2:4, P4,3:1, P4,4:3}, {P4,1:3, P4,2:1,
P4,3:4, P4,4:2}, {P4,1:3, P4,2:4, P4,3:1, P4,4:2}}. Hence, we have four possible.

i. First collection
First collection is {P4,1:2, P4,2:1, P4,3:4, P4,4:3} = {1342, 4213, 2431, 3124}. By
this collection we can produce a Latin square.

1342
4213
2431
3124

→

1 3 4 2

4 2 1 3

2 4 3 1

3 1 2 4

→ Latin Square

ii. Second collection
Second collection is {P4,1:2, P4,2:4, P4,3:1, P4,4:3} = {1342, 3241, 4132, 3124}.
By this collection we cannot produce a Latin square.

1342
3241
4132
3124

→

1 3 4 2

3 2 4 1

4 1 3 2

3 1 2 4

→ not Latin Square

iii. Third collection
Third collection is {P4,1:3, P4,2:1, P4,3:4, P4,4:2} = {1423, 4213, 2431, 2314}. By
this collection we cannot produce a Latin square.

1423
4213
2431
2314

→

1 4 2 3

4 2 1 3

2 4 3 1

2 3 1 4

→ not Latin Square



iv. Fourth collection
Fourth collection is {P4,1:3, P4,2:4, P4,3:1, P4,4:2} = {1423, 3241, 4132, 2314}. By
this collection we can produce a Latin square.

1423
3241
4132
2314

→

1 4 2 3

3 2 4 1

4 1 3 2

2 3 1 4

→ Latin Square

From four possible collections, we get a Latin square only from the first and
the fourth. Then for n = 4, the total number of Latin square-x is 2 × 4! = 48,
because we can arrange rows in 4! ways.

4 Result and Discussion

We know that all permutations from Latin square satisfy (2). The complete
result of enumeration of Pn is shown in Table 1. After enumeration of Pn, we can
enumerate the number of Latin square-x by chose and arrange n permutations
to n×n array that produce a Latin square, the complete result of enumeration
of Latin square-x is shown in Table 2.

Table 1. The number of permutation from Latin square-x [7]

Pn |Pn,i:j |∗ |Pn,i:j |∗∗ |Pn|
P4 1 0 1× 8 = 8

P5 2 2 2× 8 + 4 = 20

P6 4 0 4× 24 = 96

P7 24 80 24× 24 + 80 = 656

P8 116 0 116× 48 = 5568

P9 920 4752 920× 48 + 4752 = 48912
∗: for i 6= j,∗∗: for i = j

Table 2. The number of Latin square-x [7]

n L(n) Total

4 2 2× 4! = 48

5 8 8× 5! = 960

6 128 128× 6! = 92160

7 171200 171200× 7! = 862848000

5 Conclusion

After analyzed the permutation from Latin square-x, it can be concluded that
all permutation satisfy (2), then using those permutations we can enumerate
the number of Latin square-x by chose and arrange n different permutations to
n× n array. If from that we get a Latin square then we have Latin square-x.
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